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Phenomenological framework for fluctuations around steady state

Marco Paniconi and Y. Oono
Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, Illinois 61801-3080
~Received 6 May 1996!

A phenomenological framework to describe fluctuations around steady states is formulated. The framework
is illustrated for a magnetic system maintained at a nonequilibrium steady state by an oscillating magnetic
field, modeled at the mesoscopic level by a Langevin dynamics. The large deviation formalism along the time
axis is employed to construct a generalized entropy to describe the fluctuations in the steady state for time
averaged observables~state variables!. We propose a phenomenological postulate that the fluctuations about
the steady state can be obtained from the response of the state variables to ‘‘thermodynamic conjugate forces’’
~fluctuation-response relation!, as in the ordinary thermodynamic fluctuation theory. An experimentally real-
izable method to study the linear response about the steady state against state variable perturbations is pro-
posed, and illustrated for the driven magnetic system. The notion of a proper state space to describe nonequi-
librium steady states is discussed, and to this end, we introduce a dissipation variable to extend the state space
for our model system. In the extended state space, we elucidate and study various stability and Maxwell-type
relations that follow from ourlocal phenomenological~thermodynamic! framework. Some relevant issues
regarding a more general thermodynamic framework are also discussed.@S1063-651X~97!04301-8#

PACS number~s!: 05.70.Ln, 05.40.1j, 05.45.1b, 02.50.2r
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I. INTRODUCTION

There has been little progress in establishing general p
nomenological principles for systems away from equil
rium, even if they are in steady states. There is no acce
nonequilibrium thermodynamic framework for steady sta
tantamount to equilibrium thermodynamics. The theory
linear irreversible thermodynamics~LIT ! @1# can cover a
wide class of physical phenomena that on a global scale
still be far from equilibrium, but it cannot cope with system
far away from~local! equilibrium, especially systems that a
locally driven by large external forces, such as the one s
ied in this work. The situation does not improve very mu
with some attempts to extend the phenomenology to non
ear regimes@2#.

In this paper we construct a phenomenological framew
to describe fluctuations around steady states. Here we m
by the phenomenological framework a theoretical framew
that describes a system in terms of a few~coarse-grained!
state variables and which introduces the~generalized! devia-
tional ~or fluctuational! entropy to describe the fluctuatio
distribution. As can be seen from the thermodynamic fl
tuation theory around equilibrium states@3#, phenomenologi-
cal fluctuation theory should shed some light on the phen
enological ~or thermodynamic! framework ~if any! to
describe macroscopic and/or long time behaviors of ste
states. This is the main motivation to study the fluctuation
a driven system in this paper. We analyze a model o
magnetic system that is driven by a large oscillating m
netic field to illustrate the phenomenological framework.

Macroscopic or phenomenological variables are defi
by an appropriate averaging. Depending on the averag
method, we have different phenomenological framewo
~even for equilibrium systems!. Equilibrium thermodynamics
chooses ensemble averaging. In this paper, we choose
averaging for technical simplicity. Our model system is p
551063-651X/97/55~1!/176~13!/$10.00
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riodic in the steady state, so defining our~macroscopic! ob-
servables as time-averaged quantities is natural. Such an
proach is now standard in the thermodynamic formalism
dynamical systems initiated by Sinai@4–8#. Furthermore, if a
system consists of a few small systems, as in the cas
nanobiological examples, time averaging is perhaps the o
realistic method to study its long time behavior phenome
logically. A phenomenological framework for ensemble a
eraged fluctuations will be discussed in a subsequent pa

Just as equilibrium thermodynamic quantities of a sm
volume fluctuate, time averaged observables deviate~that is,
fluctuate! from their long-time averages when they are co
sidered on a small time span. Equilibrium thermodynam
fluctuation theory postulates a phenomenological postu
~the Boltzmann-Einstein relation!, which allows us to relate
fluctuations and responses of the equilibrium states to pe
bations~the fluctuation-response relation!. The postulate is
empirically amply verified and is a natural consequence
statistical thermodynamics.

The fluctuation-response relation analogous to that
equilibrium holds in the steady states of our model driv
system. The validity of the fluctuation-response relation
lows us to study Maxwell’s relations and Le Chatelier-Bra
principles, etc. The reader may doubt the existence of a g
eral phenomenological framework for steady states. We
gue that the state space for arbitrary nonequilibrium state
a system is not finite dimensional~even in the steady state! in
general. Therefore, a general theory for any nonequilibri
steady state, even if exists, would be too general to be us
However, our results suggest that if we restrict our attent
to simplersystems, the existence of a phenomenological~or
thermodynamic! framework describing them is conceivabl

There are dynamical and kinetic approaches to study fl
tuations around nonequilibrium steady states@9–11#. Some
of these theories are beyond local equilibrium assumptio
and quite general, but still the distance from local equil
176 © 1997 The American Physical Society



lt
rv
iu
ab
o

m
ize
th
ra
uc
or
a
f
tic
n
e
a
d
er
ar
m
ro
re
ss
c
e
s-
n

n
r

a-
e

r,
a

is
th
u

ea

n
-

v
ei

ed

bil-
of
d by

-
d

ro-

sert
be
as

s
s

he

nge-

55 177PHENOMENOLOGICAL FRAMEWORK FOR FLUCTUATIONS . . .
rium cannot be large due to its perturbative nature. Our u
mate aim is to relate macroscopically experimentally obse
able quantities with each other as in the standard equilibr
thermodynamics. As far as macro-observables are defin
~as, e.g., time averaged quantities!, no particular closeness t
equilibrium is required.

The paper is organized as follows. In Sec. II, after a su
mary discussion of relevant backgrounds, the general
fluctuation entropy function is introduced to characterize
fluctuations around the steady state. Its existence is gua
teed by large deviation theory, which allows us to constr
the entropy function from the nonequilibrium entropy f
Langevin equations, which was studied long ago by Grah
@12#. Our model system, a coarse-grained description o
uniform magnetic particle under an oscillating magne
field, is introduced in Sec. III. Its generalized fluctuation e
tropy is computationally constructed in Sec. IV. The mod
system can be thought of as a model of a magnetic dom
or a small magnetic particle, dispersed in an inert solid un
an oscillating magnetic field. Both should be realized exp
mentally without difficulty. In Sec. V, we discuss the line
response about the steady state. This furnishes an experi
tally accessible method to observe the generalized ent
function for fluctuations. The dissipation variable and its
lation to the state space for the driven system are discu
in Sec. VI A. Various susceptibilities are introduced in Se
VI B, followed by a discussion of Maxwell relations and L
Chatelier Braun principles in Sec. VI C. Section VII di
cusses the relevance of the asymptotically computed ge
alized entropy to nonasymptotic realistic situations~finite ob-
servation time, not small noise!. We summarize our results i
Sec. VIII, which also contains some discussions on the p
requisite to construct the full thermodynamic theory.

II. LARGE DEVIATION FRAMEWORK

The fundamental relation for the probabilities of fluctu
tions in equilibrium statistical thermodynamics is th
Boltzmann-Einstein relation@13#

P;expF VkB dsG , ~2.1!

whereds is the increase of entropy density~note thatds<0!
due to fluctuation,V is the volume where fluctuations occu
andkB is the Boltzmann constant. The above relation is
example of a large deviation~LD! principle as pointed out by
Lanford @14#; an elementary discussion of the principle
given below for convenience. The LD principle is the ma
ematical essence of the probability-entropy relation for eq
librium fluctuations~however, see the comments below!.

A dynamical analog of the relation~2.1! for linear irre-
versible processescloseto global equilibrium was introduced
by Hashitsume@15# and also by Onsager and Machlup@16#.
Graham later generalized the theory for arbitrary nonlin
processes far from equilibrium@12#. A general LD theoreti-
cal interpretation of these nonequilibrium generalizatio
was proposed in@17#. Markov processes satisfy a LD prin
ciple @7,18,20,29#. Hence a wide class of nonequilibrium
systems that are modeled as Markov processes can ha
statistical framework analogous to the Boltzmann-Einst
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relation for time-averaged quantities. For spatially extend
systems in local equilibrium, Eyink@19# recognized the re-
lation of Graham’s work to~ensemble theoretical! LD, and
proposed a minimum excess work principle for the proba
ity of spontaneous fluctuations in the ensemble theory
steady states. An analogous principle has been observe
Ross and co-workers@21#.

A LD principle arises, e.g., in the following simple con
text @20#. ConsiderN independent and identically distribute
~iid! random variablesXi , i51,...,N. Let the mean̂Xi&5m,
and define the empirical average asyN5N21( i51

N Xi . The
weak law of large numbers@22# tells us ~if, for example,
^X i

2& is finite! that yN→m asN→` in probability. Crame´r
@24# proved the following refinement of the law:

P~yNPA!;exp@2NI~A!# as N→`, ~2.2!

whereI (A)5infxPAI (x). The functionI (x) is called therate
function ~generalized entropy function! or the Crame´r func-
tion ~as proposed by Frisch@25#!, which is a non-negative
convex function with global minimum atx5m @i.e., I (m)
50#. Roughly speaking, we say the LD principle holds forXi
if ~2.2! is valid.

Thus the relation of~2.1! and the LD principle for space
average~which is actually the ensemble average for mac
scopic systems! is explicit. However, it should be clearly
recognized that purely phenomenologically, we cannot as
that the rate function for equilibrium fluctuations can
computed with the aid of equilibrium thermodynamics
~negative! deviational entropyds, because the underlying
statistical model~equilibrium statistical thermodynamics! is
lacking. Therefore,~2.1! is a phenomenological postulate@3#.

There is an analogous theorem~Sanov’s theorem@26#! for
the empirical distribution ofyN ~the so-called level-2 LD
principle @18,20#!. In this case the LD principle reads

P~ fPB!;exp@2NI~B!# as N→`, ~2.3!

whereI (B)5inf fPBI ( f ). The rate function~al! I ( f ) is given
by the Kullback-Leibler entropy

I ~ f !5E dx f lnS ff 0D , ~2.4!

where f 0 is the true~density! distribution function.
Consider a stochastic fieldf(x,t) with a sampling mea-

sureW on the path space~i.e., the probability of a bundle~or,
more precisely, a cylinder set! A of paths~histories! is given
byW([A]). A functional version of Sanov’s theorem tells u
that the LD rate function~al! I characterizing the fluctuation
of the path probabilityP ~i.e., the empirical probability of a
bundle of pathsA, P[A] ! is given by

I @P#5tr P ln~P/W!, ~2.5!

where tr~trace! denotes the sum over all the histories of t
process.

Suppose the stochastic process is described by the La
vin equation of the form

ḟ~x,t !5b~f,t !1es~f!h~x,t !, ~2.6!
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178 55MARCO PANICONI AND Y. OONO
wheref(x,t) is a stochastic~vector! field, b(f,t) a time-
dependent ~vector-valued! function of f(x,t), s~f! a
~matrix-valued! function, h(x,t) the zero mean Gaussia
white noise witĥ h(x,t)h(x8,s)&5e2d(t2s)d(x2x8), and
the parametere is the overall strength of the noise. The tru
distribution function~al! is known to be asymptotically in the
small e limit @12,27,28#

W@f~ !#'expF2
1

e2
S01S11O@e2#G , ~2.7!

wheref~ ! denotes a~space-time! history ~path! of the pro-
cess defined by the Langevin equation,S1
5*]xibi@f(x,t)#dx dt, and

S05
1

2 E (
i j

ai j $ḟ i~ !2bi@f~ !#%$ḟ j~ !2bj@f~ !#%dx dt,

~2.8!

with ai j5((ks iksk j)
21. The rate function for an observab

^f „f~ !…&c , where^ &c denotes a functional off @which may
be the mere expectation value off , or may become anothe
function of (x,t)#, is obtained by minimizingI [P] over allP
under the constraint tr$P@f~ !#f „f~ !…%5^f „f~ !…&c(x,t). The
result is the rate function, given as the Legendre transform
the generating functionalC@l~ !#:

I @^ f „f~ !…&c#5C@l~ !#2E dx dt l~x,t !^ f „f~ !…&c~x,t !,

~2.9!

where

C@l~ !#52 ln tr expF2
1

e2
S01S11O@e2#

2E dx dt l~x,t !^ f „f~ !…&c~x,t !G ~2.10!

andl(x,t) is determined by

d

dl~x,t !
C@l~ !#5^ f „f~ !…&c~x,t !. ~2.11!

If spatial fluctuation may be ignored, we may suppress
spatial coordinates in the above formalism. For tim
dependent steady states~e.g., periodic states in our system!
of a small particle, it is natural to characterize its state w
time-averaged quantities. Hence, it is also natural to st
the fluctuations of time-averaged quantities. In this case
Lagrange multiplier functionl becomes a constant. If we ar
interested in small noise systems, we may rely on the low
order result of Eq.~2.7! ~a saddle point approximation for th
limit e→0 to evaluate rate functions!. Thus the formulas cor-
responding to Eq.~2.9! read in the large observation timet
limit

I ~ f̄ !5
1

t
infFS01lE

0

t

dt f„f~ t !…G2l f̄ , ~2.12!

P~ f̄ !'expF2
t

e2
I ~ f̄ !G , ~2.13!
of

e
-
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where f̄ denotes the time average of the observable ovet,
f̄5t21* 0

tdt f„f(t)…. The computation of the generalize
entropyI for a fluctuationf̄ involves minimizing the action
S0„f(t)… over all pathsf(t) under the constraintf „f(t)…
5 f̄ . Theoptimalpath ~or path of least action! for a givenl
satisfies the Euler-Lagrange equation

d

dt
]ḟL5]fL, ~2.14!

where

L5
1

2 (
i j

ai j @ḟ i~ t !2bi„f~ t !…#@ḟ j~ t !2bj„f~ t !…#

1l f „f~ t !…. ~2.15!

The rate functionI is usually referred to as an entrop
function~al! for the system. However, the word must be u
derstood just as used in the thermodynamic theory of fl
tuation. As is clearly explained in Callen@3# and above, the
entropy governing fluctuations isnot interpreted as a stat
function defined on the thermodynamic state space witho
phenomenological postulate, although statistical thermo
namics justifies this postulate. Without any postulate we c
not directly construct equilibrium thermodynamics pure
phenomenologically from the study of equilibrium fluctu
tions alone@30#. As was first noted by Takahashi@7#, the
so-called thermodynamic formalism for dynamical syste
@4–6# is a LD principle for time-averaged quantities. W
must clearly recognize that the so-called thermodynamic
malism for dynamical systems has been used only to
scribe fluctuations, and not to understand the difference
tween different dynamical systems.

III. A MODEL SYSTEM

A driven system for which we wish to apply a gener
theoretical framework is a magnetic spin system under
influence of a time-dependent magnetic field. The syst
was considered by Zimmer@32# using a time-dependen
Ginzburg-Landau equation to model the dynamics of
spatially coarse-grained magnetization. We study the mo
at the mean field level, but with a small noise. The mo
takes the following form:

ḟ52g0@2r 0f1u0f
31h0 cos~vt !#1eh~ t !, ~3.1!

where the fieldf(t) denotes the~space-averaged! magneti-
zation,h(t)5h0 cos(vt) is the external magnetic field,u0 is
a positive constant,g0 is the kinetic coefficient, andr 0 is the
temperature parameter@proportional to (Tc2T) with Tc be-
ing the unrenormalized critical temperature, ifT is close to
Tc ; constant ifT is sufficiently away fromTc#. h(t) is a
white noise sourcêh(t)&50, ^h(t)h(t8)&5e2d(t2t8).

If the spatial average of the magnetization is taken over
infinite volume, then there should not be any noise. We
sume that our system is not~macroscopically! very large.
Therefore, there is a residual noise. In the following we
scale the fieldf and time to express the dynamics
terms of the minimal set of parameters,r5r 0g0/v,
h5h0(u0g 0

3/v3)1/2:
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ḟ5rf2f31h cos~ t !1eS u0g0

v3 D 1/2h~ t !. ~3.2!

Notice that the noise strength effectively decreases w
increasing frequency, so that the small noise theory@i.e., the
saddle point approximation used to obtain Eq.~2.12!# should
be more accurate for largerv. For 2p/v smaller than the
typical relaxation time of the locally course-grained magn
tization, the system cannot~locally! equilibrate over the time
scale of the field. Consequently, the system is intrinsica
away from local equilibrium, and there is no phenomenolo
available.

In the zero noise limit, the system undergoes a phase tr
sition from a zero time-averaged magnetization phase~Z
phase! to a nonzero time-averaged magnetization phase~NZ
phase!. Its phase diagram is illustrated in Fig. 1 for conve
nience@33#. The transition between theZ and the NZ phases
is a continuous~second order! phase transition for all field
amplitudes. Forr,0 ~i.e., T.Tc! there is only theZ phase.

IV. GENERALIZED FLUCTUATION ENTROPY
FOR TIME-AVERAGED MAGNETIZATION

We wish to study the probability of fluctuation around th
steady state of the driven magnetic model~3.2!. Here we
mean by ‘‘steady state’’ any state that has well-defined lon
time averages. Steady states of our model are periodic. In
small noise limit, the rate function for the long-time averag
magnetization of Eq.~3.2! is given by @see Eqs.~2.8! and
~2.12!#

I ~M̄ !5
v3

g0u0

1
2p

inf
M̄

S0 , ~4.1!

where infM̄ implies to search the infimum overf(t) whose
time average is equal toM̄ , and

S05E
0

2p

dt
@ḟ2rf1f32h cos~ t !#2

2
. ~4.2!

FIG. 1. Plot of the zero-noise phase boundary separating
M̄50 ~Z phase! and theM̄Þ0 ~NZ phase! phases. The upper region
~i.e., largeh! is theZ phase, and the lower region the NZ phas
The transition is continuous throughout the phase diagram.
h
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y
y
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In this calculation, for simplicity, we look for the infimum
among the set of functions periodic in 2p. This does not give
the true infimum, but the discrepancy for not extremely lar
deviations is very small. This is the reason why the integ
tion range of Eq.~4.2! is ~0,2p!. The parametersv,g0,u0 are
set to unity in what follows.

For h50 ~i.e., the equilibrium state! the infimum is real-
ized by a constant pathf(t)5M̄ , yielding the rate function
I (M̄ )5(rM̄2M̄3)2/2 in theZ phase, and in the NZ phas
outside the coexistence region~see below!. For nonzero driv-
ing fields, the Euler-Lagrange equation for the optimal p
cannot be analytically solved. One way may be to solve
equation numerically, but here a direct method is used
deterministic steepest descent method@23#. The fieldf(t)
~tP@0,2p#! was sampled along the time axis with a tim
spacingdt50.01, and with periodic boundary condition
From the most probable state@l50, ḟ(t)5rf2f3

1h cos(t)#, the Lagrange multiplierl was slowly increased
above zero. The optimal statef(t) corresponding to the po
tentialS0 minimum for a givenl was then used as the initia
state for the next trial with a slightly largerl. The resultant
rate functionI (M̄ ) is given in Fig. 2.

In the Z phase, the flatness of the rate function near
optimal value indicates the importance of correlation alo
the time axis. Thus the rate function becomes flattened ah
moves from larger values toward its critical valuehcr.0.93.
Compareh51.2 andh50.975. As in equilibrium, the rate
function equal to the generalized entropy function, becom
flat at the symmetry breaking point.

Even in the symmetry-broken phase~in our case the NZ
phase!, I must have the convex shape analogous to the
energy of coexisting phases in equilibrium:I50 in the coex-
istence region between the steady states~for example,M̄'
60.35 forh50.9 in Fig. 2!. For ordinary Markov processes
such as in our case, the convexity of the rate function
guaranteed by the LD principle. However, just as the f
energy in equilibrium statistical mechanics with a finite a
eraging volume, if the averaging timet is not infinite, then
the rate function for time-averaged quantities can be nonc
vex. In the infinite time limit the optimal path for any fluc
tuation in the coexistence region involves~multi! instanton
paths connecting the two attracting states6M̄0, which yield
zero action ast→`. Note that the potentialI here is com-
puted in the limite→0 first, and thent→`. In this limit, the
states2M̄0,M̄,M̄0 are realized as an average over
ensemble of multi-instanton paths; for a given sample
only observe one of the ‘‘pure’’ states6M̄0. In the reverse
limit, t→` first, thene→0, I would always have the uniqu
minimum at the zero state.

As is discussed in the preceding paragraph, if the r
function is computed for not very long time, then it is n
convex in the NZ phase, and behaves just as the local e
librium free energy for the ferromagnetic phase. If the av
aging time spant is not significantly longer than the trans
tion time to jump between the attractors, then we hav
nonconvex short-time~local in time! rate functionJ resem-
bling a Landau-type function with a nonconvex portion co

e

.
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FIG. 2. I (M̄ ) computed with a steepest
descent method, forr51. The solid line is
h50.9, the dotted lineh50.975, the dashed line
h51, and the long dashed lineh51.2.
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necting the two states6M̄ , but practically identical to the
true rate function~for long-time! outside the coexistence re
gion.

Let Dt be the averaging time to obtain the ‘‘local’’ rat
function J(m) for the ‘‘order parameter’’m defined as the
time average overDt. Then, the probability of observingm
is estimated asP(m);exp@2DtJ(m)#. We may consider
2lnP(m) as an equivalent of the free energy~chemical po-
tential!, which governs the dynamics ofm at the time scale
of Dt. Hence, just as in the modeling of dynamics, as
~time-dependent! Ginzburg-Landau equation, we may writ

m~ t1Dt !2m~ t !}
]

]m
ln P~m!52Dt

]

]m
J~m!, ~4.3!

which has an indistinguishable form from the usual~near!
equilibrium Ginzburg-Landau equation based on the lo
free energy~under local equilibrium assumption!. Here the
proportionality constant is related to the noise level, i.e.,
analogue of the fluctuation-dissipation theorem holds.

When a coarse-grained model is used in statistical
chanics to describe nonequilibrium phenomena such as p
transition kinetics@34#, often a question is raised whether w
can use the~Landau-Ginzburg type! ‘‘free energy density’’
in nonequilibrium cases in which the deviation from equili
rium is sometimes not necessarily small. The above con
eration tells us that the so-called Landau-Ginzburg free
ergy density need not be interpreted as the conventional
energy density. It is legitimate to use this type of function
much wider contexts as long as we study~space-time!
coarse-grained observables.

V. FLUCTUATION-RESPONSE RELATION

Suppose an actual small magnetic particle is given.
perimentally, it is not easy to observe the rate function. T
is true even in the computer simulation of the model be
discussed here. The difficulty of experimentally obtaini
rate functions for large fluctuations was clearly recognized
@17#. However, if an analogue of thermodynamic fluctuati
theory is valid, then we can experimentally easily determ
the rate function at least for small fluctuations.
e

l

n

e-
se

d-
n-
ee

-
s
g

n

e

In equilibrium states, statistical thermodynamics tells
that the susceptibility is related to the variance of equilibriu
fluctuations as

^dXidXj&52kB
]Xi

]F j
U
$Fk%

, ~5.1!

where$Xi% is the set of fluctuating extensive quantities,$Fi%
the set of corresponding thermodynamically conjugate int
sive quantities with respect to entropy@3#, and the subscripts
$Fk% indicate that all intensive parameters exceptF j are held
constant. The fluctuation contribution to the entropy chan
can be written as

2dS5
1

2 ( si jdXidXj , ~5.2!

wheresi j can be computed thermodynamically according
Eq. ~5.1!. The essence of the phenomenological postulate
equilibrium fluctuation theory is that the Taylor expansi
coefficients of the LD rate function for fluctuations are d
termined by the thermodynamic responses of the equilibr
state around which fluctuations are being studied.

Mimicking this equilibrium postulate, we formulate ou
phenomenological postulate as follows. The Taylor exp
sion coefficients of the rate function around the mean can
obtained from the response of the phenomenological v
ables to ‘‘thermodynamic’’ conjugate forces. Implicit in th
postulate is the existence of a proper state space for
steady states~about which we give a detailed discussion
Sec. VI!. The postulate guarantees that at least locally in
state space, we have a generalized entropyS and its variation
dS around a given steady state is the~negative! rate function.
That the susceptibility can be determined by a response is
we shall see soon, certainly correct. However, the postu
also requires that the conjugate force that elicits the cor
response does not perturb the system out of the state sp
The latter condition is less trivial, and will be discussed
Sec. VI.
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Let us analyze the process of computing the rate func
I for the time average off ~f!, wheref obeys Eq.~3.2!. The
Euler-Lagrange equation for the variational proble
inf f (f)S0(f) with the Lagrange multiplierl reads@we con-
sider the simple case of additive noise withs51, and a sca-
lar drift b(f,t) in Eqs. ~2.14! and ~2.15!, as in our model
magnetic system#

f̈5b~f,t !]fb~f,t !1] tb~f,t !1l]f f ~f!. ~5.3!

One can rewrite this as two first order equations:

ḟ5b~f,t !1lg, ~5.4!

ġ52g]fb~f,t !1]f f ~f!. ~5.5!

SinceS0 is the generalized entropy functional on the pa
space, a natural interpretation ofl is the ~‘‘thermody-
namic’’! conjugate force of the ‘‘thermodynamic’’ variabl
f (f). Note thatl50 for the most probable path~steady
state!, so that we shall sometimes writel5Dl to emphasize
that l is the external field for adeviation from the steady
state~i.e., l is a generalized affinity!

Looking at Eq.~5.4!, we may interpretlg as the externa
force we can experimentally impose to produce the des
deviation. Sincelg perturbs the steady state, the deviati
corresponding to the one in Eq.~5.1! can be computed from
the linear response of the most probable valuef (f)
to lg. Thus the postulate of the fluctuation-response rela
is almost vacuously true for the Langevin model.

The shape of the rate function near the most proba
value is quadratic, that is, the distribution of small fluctu
tions is roughly Gaussian~away from critical points!. The
quadratic approximation to the rate function is obtained e
ily from the linear response. The Euler-Lagrange equat
or equivalent Eqs.~5.4! and ~5.5!, linearized about the mos
probable pathḟ0(t)5b†f0(t),t‡ reads

Dḟ5Df]f0
b~f0 ,t !1g, ~5.6!

ġ52g]f0
b~f0 ,t !1]f0

f ~f0!, ~5.7!

wheref5f01lDf. We introducex through writing the rate
function for f̄[ f (f) to the quadratic order asI ( f̄ )5@ f̄
2 f (x0)#

2/2x. Notice thatl5Dl is the conjugate paramete
for f̄ when we compute the rate function. Hence,x may be
computed as the response of the system to a forceDlg(t),
x52limDl→0D f̄ /Dl, whereD f̄ is the deviation off̄ due to
the perturbation in Eq.~5.6!.

In the limit of zero noise,]f0
b@f0(t),t# is given once we

know the model and consequently the attractor pathf0(t).
Operationally, however, we do not know~observe! the func-
tional form of the model@i.e., b(f0 ,t)#. Therefore, a more
direct procedure accessible experimentally is desirable.
now outline this procedure to determinex, which involves
the following three steps.

~1! Determination of]f0
b@f0(t),t#: The direct method to

obtain ]f0
b@f0(t),t# is to slightly perturb the system an

measure the relaxation of the responseDf(t). We accumu-
late results from many runs to obtain the average, whic
n

d

n

le
-

s-
,

e

is

very close to the most probable response when nois
small, as in our case. From this, we obtain

]f0
b@f0~ t !,t#52

d

dt
lnF ^Df~ t !&

^Df~0!&G , ~5.8!

where ^ & denotes the average over all samples. Depend
on the noise level in the experimental sample, one wo
have to perturb the system periodically, and measure the
erage response. Perturbing the system every couple of
ods is sufficient here as we consider the caser5r 0g0/v51,
which implies that the time scale for the magnetization
laxation ~'r 0g0! and the period of the external magnet
field are of the same order~in this example the period is 2p!.
Figure 3~a! exhibits a typical sample off(t)[5M (t)] for
the system parametersr51, h51, and a noise levele50.05.
Upon perturbing the system~with a small force'0.001 in
magnitude!, the measurement of the relaxation yiel
^DM (t)&/^DM (t50)&, illustrated in Fig. 3~b!. The relax-
ation rate]f0

b@f0(t),t# is then obtained easily from Eq
~5.8!.

~2! Computation ofg(t): Given]f0
b@f0(t),t#, one has to

solve Eq.~5.7! for g(t). We need a steadyg(t) ~that is, the
long time solution!. Notice that because of the negative si
in the linear term, the equation forg(t) is intrinsically un-
stable. To obtain the steady state solution forg(t), one can
expandg(t) „and ]f0

b@f0(t),t#… in harmonics of the fre-
quency of the magnetic field~here set to unity!, and solve the
resulting linear matrix equation. As mentioned earlier,
small fluctuations, restricting the infimum to periodic fun
tions should be a very good approximation, so that the p
odic ansatz to solve Eq.~5.7! is reasonable.

~3! Determination of the response: The obtained fo
g(t) is scaled withl and applied to the original system. Th
responseD f̄ yielding x52limDl→0D f̄ /Dl is measured; or
more directly, one can solve the linear equation~5.6! for
Df(t), in the same manner as described in step~2!, and
obtainD f̄5]f0

f (f0)Df(t).
The zero noise susceptibility for the magnetization co

puted from the linear response theory agrees reasonably
~as expected! with the steepest-descent optimization resu
The agreement improves asI becomes narrower, that is, a
the time correlation diminishes.

In the NZ phase, we can study the fluctuation aroun
given phase, say, the up-spin phase. The rate function
small fluctuations becomesI5 1

2x21(M̄2M̄0)
2, whereM̄0 is

the time average magnetization in the steady up-spin s
The susceptibilityx defined in this way both in the NZ andZ
phases behaves as shown in Fig. 4. The magnetization
ceptibility diverges at the transition point~h'0.93!. Near the
transitiong(t) ~andx! becomes large, so the first order e
pansion is suspect to break down. Hence, the data nea
phase transitionh50.93 are not likely to be very accurate.

In Fig. 5, we illustrate the difference between the ‘‘the
modynamic’’ susceptibilityx defined above and the usu
response to a constant fielddM̄/dHuH→0. The discrepancy is
quite large near the transition; note the log-log plot near
transition. Note that even in the case of zero oscillating fie
the susceptibilities are different. This is due, of course, to
fact that we are considering the fluctuations of the tim
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FIG. 3. For the system paramete
g5v5u05r5h51: ~a! a sample trajectory of
M (t) for a noise levele50.05. From the average
of M (t) over many samples, 1000–4000 in th
case, one obtainŝM (t)& and ~b! the response
function ^DM (t)&/^DM (t50)&.
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averaged magnetization. In the h→0 limit,
g51/b8(M0)521/2rM 0 , with M0 being the equilibrium
magnetization. The thermodynamic susceptibility in the z
oscillating field limit becomesx5$1/]f0

b@f0(t),t]}
2, the

square of the usualsingle-timesusceptibility. More gener-
ally, for a time-independent symmetric regression ma
]f j

bi(f0 ,t)[Ki j , and a constant diffusion matri
ai j5((ks iksk j)

2151 @see Eq.~2.8!#, the long-time suscep
tibility is given by the square of the single time susceptibil
@35#.

The fluctuation-response relation discussed above is
the fluctuation of time-averaged observables. T
fluctuation-response relation in instantaneous observa
can be studied analogously, although considering insta
neous quantities in the present context is somewhat less n
ral. For a given fluctuation at some time, e.g.,t50 @for this
casel(t)5ld(t)#, the solution forg(t) at the linear level
becomesg(t)52]f0

f (f0)u t50 exp$2*0
t dt]f0

b@f0(t),t#% for
o

x

or
e
es
a-
tu-

t,0 ~g50 for t.0!. For gradient dynamics (ḟ52]fH), the
application ofg(t) to produce the right fluctuation become
superfluous; knowledge of the potentialH5I , which defines
the dynamics, automatically dictates the correct coupli
However, without knowledge of the steady state measure
cannot prescribe the needed force to perturb the sys
Therefore, one must proceed by measuring the~natural! re-
laxation]f0

b@f0(t),t# to the steady state, and computeg(t)
via Eq. ~5.7!.

VI. THERMODYNAMIC FRAMEWORK
FOR FLUCTUATION

A. State space

The fluctuation formula~5.2! tells us that to have a ful
thermodynamic fluctuation theory we must first set up
state space properly even in equilibrium. For nonequilibriu
thermodynamics obviously we must have a larger state sp
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FIG. 4. The susceptibility as a function ofh,
for r51. The inset on the upper left side is
blowup for h<0.5. The inset on the lower lef
side is a log-log plot of the regionh50.92 to
h50.94, in intervals ofDh50.02; the upper line
of points is for h.hcr , lower line for h,hcr .
hcr50.931. The slopes of the upper line is abo
2, and the lower line around 2.5.
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than the equilibrium counterpart. For example, in the
tended thermodynamics@36# not only the extensive quanti
ties but also their time derivatives~or the corresponding
fluxes! are regarded as state variables. Here we will not d
cuss in detail the condition for the state space to satisfy
order to support a thermodynamic or phenomenolog
theory. It is clear, however, that a point in the state sp
must reasonably uniquely specify the macroscopic state
the system. Operationally, the requirement is that there
one-to-one correspondence between the set of macros
cally controlled parameters and the macroscopic states.

If we allow arbitrary~but periodic! perturbation, memory
effects, and other complicated nonlinear phenomena mus
taken into account, and even if we declare that our obs
ables are time-averaged~or ensemble-averaged! quantities,
the state space is generally infinite dimensional to accom
date the whole variety of changes of the state. It is obvi
that the extended thermodynamics does not have a prop
-

-
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l
e
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a
pi-
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rly

set up state space~however, if confined to systems slightl
away from local equilibrium, the state space in this theo
may be properly set up!.

The above consideration tells us that it is not wise to try
construct a general thermodynamic framework for a sys
under an arbitrarily general nonequilibrium condition. Th
in this paper we confine ourselves to the variation ofh ~am-
plitude of the oscillating field! and a static fieldH, under
fixed frequency and fixed noise. For our magnetic system
time-averaged state without perturbation~i.e., the equilib-
rium state! is characterized by the time-averaged energy a
the time-averaged magnetization. They are identical to
equilibrium internal energy and magnetization, respective

Let us turn on the sinusoidal perturbation. We chan
only its amplitude. In theZ phase,M̄ is zero independent o
h ~if H50!. However, the various steady states forh.hc
should be considered macroscopically distinct; the diss
tion ~heat flowing out of the magnetic system into the he
bath! in-
m
nt
-

nd
d
of
ta
5,
FIG. 5. A comparison between the syste
susceptibilityx, and the response to a consta
field5dM̄/dH, for r51. The cross symbol de
notesx, and the circles denotedM̄/dH. The in-
sets on the left side are a blowup of the small a
high field region, and the inset on the right han
side is a log-log plot as in Fig. 5. The slopes
the upper and lower lines through the circle da
points in the log-log plot are about 1 and 1.
respectively.
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creases monotonically withh and is macroscopically observ
able. Hence, it is clear that more variables~related to the
dissipation! must be included for a complete macroscop
description. We believe in order to specify a steady state,
more state variable is needed that does not have any equ
rium counterpart. In this paper we choose it to be the tim
averaged energy dissipation rateQ̄ defined by

Q̄5
h

2p E
0

2p

dt sin~ t !f~ t !. ~6.1!

One may conclude that the state space of our magn
system driven by a fixed frequency sinusoidal magnetic fi
is spanned byM̄ , Q̄, andĒ, the time average of the energy
the system. In the following discussion of the fluctuation,
allow M̄ and Q̄ to fluctuate under the condition that th
conjugate variablez to the third state variableĒ is fixed. The
rate functionI (M̄ ,Q̄) we study below is the Legendre tran
form of the full rate functionI (M̄ ,Q̄,Ē) with respect toĒ.
Sincez is fixed to its steady state value~z50!, I (M̄ ,Q̄) is the
generalized entropy for the marginal distribution forM̄ and
Q̄. The rate functionI (M̄ ) studied in Sec. V is that of the
marginal distribution forM̄ .

B. Various susceptibilities

In the extended space (M̄ ,Q̄), the rate function at the
quadratic level is given as

I ~M̄ ,Q̄!5
1

2xQ̄
~M̄2M0!

21
1

2x M̄
~Q̄2Q0!

2

1
1

x
~M̄2M0!~Q̄2Q0!, ~6.2!

whereM0, Q0 are the most probable values ofM̄ ,Q̄, and the
susceptibilitiesxQ̄ andx M̄ refer to fluctuations sampled un
der the condition of fixedQ̄ andM̄ , respectively; that is,

xQ̄5^~M̄2M0!
2&Q̄5Q0

, ~6.3!

x M̄5^~Q̄2Q0!
2&M̄5M0

. ~6.4!

In the above two formulas we keep the other state varia
fixed when computing the susceptibility of eitherM̄ or Q̄.
However, as in the usual equilibrium theory, the susceptib
ties under the constraint that theconjugateforces of the other
variables are fixed@as in Eq.~5.1!# are the more useful an
experimentally accessible ones. This latter case arises in
theory in the following way.

In Sec. V, the susceptibility of the magnetization w
studied as a response to a perturbationlg(t) ~which we shall
write as lgM̄!; in this case there is no constraint on t
variableQ̄. l is interpreted as a conjugate generalized fo
~or affinity! to the state variableM̄ . Similarly, the fluctuation
of the dissipationQ̄ can be studied as a response to the fo
ngQ̄ . Heren is a scale factor that is the conjugate force toQ̄,
andgQ̄ is given by Eq.~5.7! with f5h sin(t)f(t). We shall
denote the susceptibilities computed with the forc
lgM̄(t) or ngQ̄(t), respectively, by
e
ib-
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d

le

i-

ur

e

e

s

xn52 lim
Dl→0

~DM̄ /Dl!n505^~M̄2M0!
2&n50 , ~6.5!

xl52 lim
Dn→0

~DQ̄/Dn!l505^~Q̄2Q0!
2&l50 . ~6.6!

The susceptibilitiesxn ,xl refer to a passive~unconstrained!
sampling of the fluctuationsM̄ ,Q̄, as in any experimenta
measurement of the susceptibility by observing the natu
fluctuations.

The relation between the two sets of susceptibilities d
cussed above follows easily from the Legendre transform
the rate function,C~l,n!5I (M̄ ,Q̄)1lM̄1nQ̄ ~a general-
ized Massieu function!:

xQ̄5
2x̄21xnxl

xl
, ~6.7!

x M̄5
2x̄21xnxl

xn
, ~6.8!

x5
x̄22xnxl

x̄
. ~6.9!

Operationally, the susceptibilitiesxQ̄ , x M̄ , x, andx̄ are de-
fined as

xQ̄52 lim
Dl→0

~DM̄ /Dl!Q̄5Q0
, ~6.10!

x M̄52 lim
Dn→0

~DQ̄/Dn!M̄5M0
, ~6.11!

x52 lim
Dl→0

~DQ̄/Dl!M̄5M0
52 lim

Dn→0
~DM̄ /Dn!Q̄5Q0

,

~6.12!

x̄52 lim
Dl→0

~DQ̄/Dl!n5052 lim
Dn→0

~DM̄ /Dn!l50 .

~6.13!

C. Maxwell’s relation and Le Chatelier–Braun principle
for steady states

Various ‘‘Maxwell-type relations’’ @such as the secon
equality in Eqs.~6.12! and ~6.13!# follow from the integra-
bility conditions ofI , and its associated Legendre transform
To interpret these relations as Maxwell relations in the c
ventional sense, we must use the phenomenological post
that asserts the existence of a state functionS(M̄ ,Q̄), for
which dS due to fluctuation isI .

To make contact with the actual steady states, the m
ematical conjugate parameters~l,n! must be related to the
physical fields that naturally perturb the system. From
experimental or operational point of view, the natural pert
bation variables in the space of steady states for our mo
magnetic system are (H,h). Locally, the relation between
these two sets is given by the matrixC52A21B as
(l,n)T5C(DH,Dh)T, where
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A5S xn

x̄
x̄
xl

D , B5S ~]M̄ /]H !h
~]Q̄/]H !h

~]M̄ /]h!H
~]Q̄/]h!H

D .
~6.14!

As mentioned in Sec. V, the phenomenological postu
is valid if the conjugate forces~affinities! l,n perturb the
steady state to a new state that remains in the state sp
Thus we should require that the inverse of the matrixC21

exists, which makes the map between~l,n! and (DH,Dh)
one to one. Any path in the state space induced by~l,n! can
then be mapped uniquely to a path in the (H,h) space. The
convexity of the rate function automatically implies that t
matrixA is invertible. The existence ofB21 follows from the
requirement of a proper state space. This means, from
local relation (DM̄ ,DQ̄)5B(DH,Dh), thatB should be an
invertible matrix for each steady state~i.e., one-to-one cor-
respondence between the system parameters and m
scopic states!. Of course, one can never verify the existen
of B21 for every steady state. Nonetheless, it does se
likely that our state space is properly set up for the followi
reason.

The behavior of the state variablesM̄ ,Q̄ in the space of
steady states defined by variations inh,H is typically the
following: M̄ increases withH, and decreases withh; Q̄
decreases withH, and increases withh. Therefore, an in-
crease inM̄ should usually result in a decrease inQ̄, and
vice versa. Furthermore, the change ofM̄ with H ~h fixed!
does tend to be larger than the magnitude of the change oM̄
with h ~H fixed!, and similarly with the Q̄ case @i.e.,
u(]Q̄/]h)Hu.u(]Q̄/]H)hu#. Thus, it is likely that the condi-
tion ](M̄ ,Q̄)/](H,h)Þ0 is satisfied, which implies the ex
istence ofC2152B21A. The existence ofB21 was con-
firmed numerically for our model Eq.~3.2!, at least for the
finite number of steady states that were checked~roughly the
range 0,h, H,2, in increments ofDh, DH50.1!.

From the above discussion, it seems plausible that
phenomenological postulate is valid for our system. Vario
Maxwell relations and stability conditions automatically fo
low, the most typical ones being the aforementioned re
tions in Eqs.~6.12! and ~6.13!. From an appropriate Leg
endre transform ofI , we obtain other relations, such as

~]M̄ /]Q̄!l5052~]n/]l!Q̄5
x̄

xl
, ~6.15!

or

~]Q̄/]M̄ !n505
x̄

xn
. ~6.16!

Using the stability condition~i.e., the stability condition of
the steady state! x̄22xlxn,0, which follows from the con-
vexity property ofI , the above two relations can be rewritte
as the inequality

~]M̄ /]Q̄!n50.~]M̄ /]Q̄!l50 . ~6.17!

More typical consequences of stability are Le Chatelie
Braun principles, such as

xn.xQ̄ , ~6.18!
e
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xl.x M̄ . ~6.19!

In general, the Maxwell relation and the Le Chatelie
Braun Principles~6.17!–~6.19! are somewhat tedious to ap
ply, as the constraints onl,n must be mapped to the corre
sponding changes inDH,Dh using the information
contained in the matrixB andA, both of which vary as a
function of the steady state. The usefulness and prac
implications of the above relations remain to be seen. Ho
ever, we can easily understand the main features of~6.17!–
~6.19! in the following fashion.

Consider first the two relations~6.18! and ~6.19!. If we
change ~decrease! l to increaseM̄ , Q̄ should decrease
Thus, if we wish to keepQ̄ fixed for the same changel, M̄
should change by less. Similarly, for a change inn, keeping
M̄ fixed should result in a smaller change inQ̄ than if we
hold l constant.

The relation (]M̄ /]Q̄)n50.(]M̄ /]Q̄)l50 is slightly
more awkward to explain, as the effect of the processl50 or
n50 is less intuitive. Generally, however, sincel is the con-
jugate force toM̄ , it is reasonable to expect a smaller chan
in DM̄ under the conditionl50 than for the processn50.

VII. FINITE AVERAGING TIME AND FINITE NOISE

We have been mainly concerned with the long-time sm
noise limit form of the rate function which is equal to th
generalized fluctuation entropy. It corresponds to the equi
rium entropy in the thermodynamic limit. In the equilibrium
thermodynamic theory of fluctuations, it is postulated th
the macroscopic entropy function can be successfully use
describe the spatially~macroscopically! small scale fluctua-
tions. If the postulate were significantly at variance with r
ality, then thermodynamic fluctuation theory would have h
little practical relevance. Thus, it is a practically importa
question to ask how reliable our limit rate function is f
shorter times with larger noises.

In order to study the reliability of the limit rate function
we studied the behavior of the susceptibility from real tim
simulations of the stochastic dynamics Eq.~3.2!. The suscep-
tibilities were studied for small nonzero noise levels, and
the averaging timet a finite multiple of the basic period 2p.
This stochastic dynamics was explicitly solved with the a
of a fourth order Runge-Kutta scheme with a typical tim
incrementdt50.005. After an initial relaxation time for the
system to settle down to a steady state, statistics of thn
period average were taken~i.e., t52np!. The sampling of
the fluctuationsM̄ ,Q̄ corresponds to a passive sampling~in
the sense explained in Sec. VI B!. Hence we are measur
ing xn ,xl . In order to compare different data sets, t
scaled susceptibilities (t/e2)^(M̄2M0)

2&un50, (t/e2)^(Q̄
2Q0)

2&ul50 are plotted for finite noise and finite averagin
period. Each data set involved the sampling of ab
104–105 runs ~n period averages!. Some cases were als
checked for a sampling of 106 runs. At least not very close to
the transition, we believe enough statistics were taken to
an accurate value of the susceptibility.

The behavior of the susceptibilityxn ,xl for three different
noise levels~e50.01, 0.05, 0.1!, with an averaging period o
10 ~n510!, is shown in Fig. 6. As is evident in the figure, th
noiseless theory is fairly accurate~at least not too close to th
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transition! for noise levelse<0.05. Fore50.1 there is a shift
in the bifurcation of the dynamics to smallerh, and the data
begin to deviate significantly from the zero-noise theory.

For a fixed noise strength, the scaling ofxn for different
averaging periods is illustrated in Fig. 7. In general, the da
for the different averaging periods~n510,5,3,1! superim-
poses well. In particular away from the transition there is
very good collapse of the data. Close to the transition t
susceptibility for largern moves towards the zero-noise
long-time limit value.

VIII. DISCUSSION

In order to have some clues for a phenomenological
thermodynamic framework for nonequilibrium systems, w
have studied the fluctuation around ‘‘steady states.’’ W
mean by steady state the state whose long-time averag
well defined. In this paper we have discussed periodic sta

FIG. 6. The scaled susceptibility~a! xn and ~b! xl ; for
e50,0.01,0.05,0.1, and averaging periodn510. The system param-
eters areH50,g5v5u05r51. The star symbol is the zero-noise
result, the squaree50.01, the circlee50.05, and the cross symbol
the e50.1 data. The inset on the right side of~b! illustrates the
behavior of the zero-noise long-timexl near the transition, which
does seem to diverge.
ta

a
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but the state may be chaotic or turbulent. Large deviatio
theory tells us that there is a generalized entropy function~al!
~rate function! that governs the fluctuation probability of
time-averaged quantities.

We have proposed a phenomenological postulate that t
Taylor expansion coefficients of the rate function are dete
mined by the response of the steady state to perturbatio
exactly as in the equilibrium thermodynamic theory of fluc
tuation. For models described by Langevin equations,
fluctuation-response relation follows trivially. The way to
compute the rate function tells us what the natural conjuga
variables are for the observables whose fluctuations w
study. This point has been illustrated by a model of a ma
netic system under a periodic magnetic field.

Although the phenomenological postulate allows us t
glimpse a possible~local! thermodynamic framework, still
we cannot make a global framework. We have clearly re
ognized that the difficulty lies already in equilibrium states
no phenomenology of time-averaged quantities has be
constructed, even for equilibrium states. Here we briefly di
cuss some relevant basic questions.

A natural question is the choice of the macroscopic ob
servables~macro-observables! to specify the macroscopic
steady state. In other words, the question is: What is th
proper ‘‘thermodynamic’’ state space? This question seem
to have been paid no serious thought in nonequilibrium. F
example, Keizer@37# introduces the concept of a physica
ensemble that may be understood as an equivalence clas
microscopic states according to the macro-observable valu
The idea sounds natural, but we must note that there is
guarantee that the choice of the macro-observables be
used for this classification is a good macrovariable set
allow a phenomenological description such as thermodyna
ics ~as intended in@37#!. As pointed out in Sec. VI the state
space of the extended irreversible thermodynamics is al
insufficient, although its state space may be sufficient fo
linear processes~i.e., systems close to local equilibrium!. In
the ordinary equilibrium thermodynamics, the concept o

FIG. 7. The scaled susceptibilityxn for different averaging pe-
riods at a noise levele50.01. The circles denote then51 data, the
squaresn53, the starsn55, and the crosses then510 data. The
system parameters areH50, g5v5u05r51. Similar behavior is
observed forxl and fore50.05.
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state variables and state space itself should be understo
primitive concepts such as points and lines in Euclidean
ometry. The crucial point is that the state space allows
principles of thermodynamics to hold; we cannot arbitrar
choose a set of macrovariables and construct a therm
namic framework.

We must point out that even for equilibrium systems d
ferent kinds of thermodynamic formalisms are possible
cording to the averaging method to define mac
observables. The following observation sheds some ligh
the importance of the ensemble concept in statistical
chanics~contrary to the claim of Ma@38#!. Let us consider a
system under equilibrium condition. We may define the
erage by a time average over a chunk of material~even a
small cluster of spins should do!, spatial average at one in
stant, or ensemble average; any linear combination of dif
ent averaging methods is a respectable means to d
macro-observables. Independent of the method of calcula
the averaged~thermodynamic! quantities, the values of aver
aged energy and magnetization are intact, and equal to
internal energy and magnetization, respectively, of the s
dard equilibrium thermodynamics. Hence, the standard t
modynamic relation under the adiabatic condition

dĒ5(
i
xidXi ~8.1!

is true independent of the method of averaging denoted
the overline, whereXi are extensive observables andxi their
conjugate variables with respect to energy. Even the ordin
Gibbs relation

dĒ5TdS1(
i
xidXi ~8.2!

holds ifS is computed as the ordinary entropy of the functi
of extensive quantities.T is identical to the absolute tem
perature.

However, fluctuations do depend on how the variance
computed, because the results depend on correlations am
sampled values. The ensemble average is strictly over in
s

,
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ng
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pendent samples, but time averages of a single speci
crucially depend on the time correlation as illustrated in
context of the rate function in@17#. Perhaps the existence o
the gross discrepancy in fluctuations calculated by these
averaging methods may be a good characteristic of gla
states. The discrepancy exists even in true thermodyna
equilibrium states: the rate functions for time-averaged fl
tuations and ensemble-averaged fluctuations are dist
This implies that even if the state space is spanned byĒ and
Xi , the ‘‘entropy’’ needed to write down the generalize
Gibbs relation corresponding to Eq.~8.2! ought to be depen-
dent on the choice of the averaging method.

It is now clear that the ordinary fluctuation-response re
tion ~5.1! and the standard Gibbs relation~8.2! are compat-
ible only when the average is understood as the ensem
average as in the ordinary statistical thermodynamics.
other words, if we choose, e.g., the time averaging, then
fluctuation theory and the usual Gibbs relation~8.2! are in-
compatible. However, this is not surprising, because the
function in this case is, as we have seen, not~2!dS. The
actual form corresponding to Eq.~8.2! must be the following
generalized Gibbs relation:

dĒ5u dS1u(
i
yidXi , ~8.3!

where yi is the thermodynamic conjugate variable forXi
with respect to the generalized entropy~whose deviation is
the generalized affinity discussed in Secs. V and VII!. Hereu
is the conjugate variable of the generalized entropyS with
respect to energy, and the rate functionI for fluctuations is
given by2dS. However, we have not yet succeeded in ma
ing this framework operationally meaningful.

ACKNOWLEDGEMENTS

The authors are grateful to the comments by S. Sasa.
work was, in part, supported by the National Science Fo
dation Grant No. NSF-DMR-93-14953, and by the Resea
Board of University of Illinois at Urbana-Champaign.
n-
.
s.

A

s-
erd

l

@1# S. R. de Groot and P. Mazur,Nonequilibrium Thermodynamic
~Dover, New York, 1984!; D. D. Fitts,Nonequilibrium Ther-
modynamics~McGraw-Hill, New York, 1962!.

@2# P. Glansdorff and I. Prigogine,Thermodynamics of Structure
Stability, and Fluctuations~Wiley, New York, 1971!; G. Nic-
olis and I. Prigogine,Self-Organization in Nonequilibrium Sys
tems~Wiley, New York, 1977!. No necessity of introducing a
new quantity likez is discussed in Y. Oono, Phys. Lett.57A,
207 ~1976!.

@3# H. B. Callen,Thermodynamics~Wiley, New York, 1960!.
@4# Ya. G. Sinai, Russ. Math. Surveys27, 21 ~1972!.
@5# D. Ruelle,Thermodynamic Formalism~Addison Wesley, New

York, 1978!.
@6# Y. Takahashi and Y. Oono, Prog. Theor. Phys.71, 851~1984!;

Y. Oono and Y. Takahashi,ibid. 63, 1804~1980!.
@7# Y. Takahashi, inProceedings of the Taniguchi Symposium
Stochastic Analysis ~Kinokuniya-North-Holland, Tokyo,
1984!.

@8# G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett.74, 2694
~1995!.

@9# I. Procaccia, D. Ronis, M. A. Collins, J. Ross, and I. Oppe
heim, Phys. Rev. A19, 1290~1979!, and subsequent papers

@10# T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phy
Rev. A 26, 950 ~1982!; 26, 972 ~1982!; 26, 995 ~1982!.

@11# A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev.
23, 1451~1981!.

@12# R. Graham, inStochastic Processes in Nonequilibrium Sy
tems, edited by L. Garrido, P. Seglar, and P. J. Sheph
~Springer, Berlin, 1978!; Z. Phys. B26, 281 ~1977!; 26, 397
~1977!.

@13# A. Einstein, Ann. Phys.22, 180 ~1907!; 33, 1275~1910!.
@14# O. E. Lanford III, inStatistical Mechanics and Mathematica



l.

, J

et

cs
i-

ra

sub-

f

on
ard
D
e
l to
or
ity
pos-

-

ted

o-

188 55MARCO PANICONI AND Y. OONO
Problems, edited by A. Lenard, Lecture Notes in Physics Vo
20 ~Springer, Berlin, 1973!, p. 1.

@15# N. Hashitsume, Prog. Theor. Phys.8, 461 ~1952!.
@16# L. Onsager and S. Machlup, Phys. Rev.91, 1505 ~1953!; 91,

1512 ~1953!.
@17# Y. Oono, Prog. Theor. Phys.89, 973 ~1993!; Prog. Theor.

Phys. Suppl.99, 165 ~1989!.
@18# S. R. S. Varadhan,Large Deviation and Applications~SIAM,

Philadelphia, 1984!.
@19# G. Eyink, J. Stat. Phys.61, 533 ~1990!.
@20# J.-D. Deuschel and D. W. Stroock,Large Deviation ~Aca-

demic, New York, 1989!.
@21# B. Peng, K. L. C. Hunt, P. M. Hunt, A. Suarez, and J. Ross

Chem. Phys.102, 4548~1995!.
@22# R. Durrett,Probability: Theory and Examples~Wadsworth &

Brooks/Cole, Pacific Grove, CA, 1991!.
@23# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling,Numerical Recipes~Cambridge, New York, 1986!.
@24# H. Cramér, Actualités Scientifiques et Industrielles736, 5

~1938!.
@25# U. Frisch,Turbulence~Cambridge, New York, 1995!.
@26# I. N. Sanov,Selected Translations in Mathematical Statisti

and Probability I ~American Mathematical Society, Prov
dence, 1961!, p. 213.

@27# R. L. Stratnovitch, Sel. Transl. Math. Stat. Prob.10, 273
~1971! ~translation of Russian paper 1962!.

@28# Y. Oono, mimeographed notes~1974!, where it was pointed
out thatS1 comes from the relation between the Ito and St
tonovitch integrals:

aijE
I
bidfj5aijE

S
bidfj2

1

2 E]ibidt.
.

-

-

Here the irrelevant spatial integral is suppressed, and the
script I denotes the Ito integral andS the Stratonovitch inte-
gral.

@29# M. I. Freidlin and A. D. Wentzel,Random Perturbations o
Dynamical Systems~Springer, Berlin, 1984!.

@30# However, if we regard all the states as~large! deviations in
the ensemble satisfying the principle of equal probability
the phase space, equilibrium thermodynamics in the stand
sense of this word can be constructed within the L
framework@31#. That is, for equilibrium, there exists a uniqu
choice of the fundamental sampling measure proportiona
the Riemann volume equal to Liouville measure. F
nonequilibrium systems, the principle of equal probabil
cannot be relied on, so such a universal approach is not
sible.

@31# R. S. Ellis,Entropy, Large Deviation, and Statistical Mechan
ics ~Springer, Berlin, 1985!.

@32# M. Zimmer, Phys. Rev. E47, 3950~1993!.
@33# The phase diagram illustrated in Fig. 1 is a slightly correc

version of, but otherwise qualitatively the same as, that in@32#.
@34# J. W. Cahn and J. I. Hilliard, J. Chem. Phys.28, 258~1958!; J.

W. Cahn,ibid. 42, 93 ~1965!.
@35# K. Tomita and H. Tomita, Prog. Theor. Phys.51, 1731

~1973!.
@36# D. Jou, J. Casas-Va´zquez and G. Lebon,Extended Irreversible

Thermodynamics~Springer-Verlag, Berlin, 1993!; Rep. Prog.
Phys.51, 1104~1988!.

@37# J. Keizer,Statistical Thermodynamics of Nonequilibrium Pr
cesses~Springer, Berlin, 1987!.

@38# S. K. Ma,Statistical Mechanics~World Scientific, Singapore,
1985!.


