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A phenomenological framework to describe fluctuations around steady states is formulated. The framework
is illustrated for a magnetic system maintained at a nonequilibrium steady state by an oscillating magnetic
field, modeled at the mesoscopic level by a Langevin dynamics. The large deviation formalism along the time
axis is employed to construct a generalized entropy to describe the fluctuations in the steady state for time
averaged observabléstate variables We propose a phenomenological postulate that the fluctuations about
the steady state can be obtained from the response of the state variables to “thermodynamic conjugate forces”
(fluctuation-response relatipras in the ordinary thermodynamic fluctuation theory. An experimentally real-
izable method to study the linear response about the steady state against state variable perturbations is pro-
posed, and illustrated for the driven magnetic system. The notion of a proper state space to describe nonequi-
librium steady states is discussed, and to this end, we introduce a dissipation variable to extend the state space
for our model system. In the extended state space, we elucidate and study various stability and Maxwell-type
relations that follow from oudocal phenomenologicalthermodynamit framework. Some relevant issues
regarding a more general thermodynamic framework are also discliS3€x63-651%97)04301-9

PACS numbgs): 05.70.Ln, 05.40¢tj, 05.45+b, 02.50-r

I. INTRODUCTION riodic in the steady state, so defining danacroscopit ob-
servables as time-averaged quantities is natural. Such an ap-
There has been little progress in establishing general phgroach is now standard in the thermodynamic formalism of
nomenological principles for systems away from equilib-dynamical systems initiated by Sir{@i—8]. Furthermore, if a
rium, even if they are in steady states. There is no accepteslystem consists of a few small systems, as in the case of
nonequilibrium thermodynamic framework for steady statesnanobiological examples, time averaging is perhaps the only
tantamount to equilibrium thermodynamics. The theory ofrealistic method to study its long time behavior phenomeno-
linear irreversible thermodynamiod.IT) [1] can cover a logically. A phenomenological framework for ensemble av-
wide class of physical phenomena that on a global scale cagraged fluctuations will be discussed in a subsequent paper.
still be far from equilibrium, but it cannot cope with systems  Just as equilibrium thermodynamic quantities of a small
far away from(local) equilibrium, especially systems that are volume fluctuate, time averaged observables deyiht is,
locally driven by large external forces, such as the one studfluctuate from their long-time averages when they are con-
ied in this work. The situation does not improve very muchsidered on a small time span. Equilibrium thermodynamic
with some attempts to extend the phenomenology to nonlinfluctuation theory postulates a phenomenological postulate
ear regimeg2]. (the Boltzmann-Einstein relatipnwhich allows us to relate
In this paper we construct a phenomenological frameworKluctuations and responses of the equilibrium states to pertur-
to describe fluctuations around steady states. Here we medations (the fluctuation-response relatiorThe postulate is
by the phenomenological framework a theoretical frameworkempirically amply verified and is a natural consequence of
that describes a system in terms of a fewarse-grained statistical thermodynamics.
state variables and which introduces theneralizegldevia- The fluctuation-response relation analogous to that in
tional (or fluctuational entropy to describe the fluctuation equilibrium holds in the steady states of our model driven
distribution. As can be seen from the thermodynamic flucsystem. The validity of the fluctuation-response relation al-
tuation theory around equilibrium statdy, phenomenologi- lows us to study Maxwell’s relations and Le Chatelier-Braun
cal fluctuation theory should shed some light on the phenomgrinciples, etc. The reader may doubt the existence of a gen-
enological (or thermodynamic framework (if any) to  eral phenomenological framework for steady states. We ar-
describe macroscopic and/or long time behaviors of steadgue that the state space for arbitrary nonequilibrium states of
states. This is the main motivation to study the fluctuations ira system is not finite dimension@ven in the steady stati
a driven system in this paper. We analyze a model of ayeneral. Therefore, a general theory for any nonequilibrium
magnetic system that is driven by a large oscillating magsteady state, even if exists, would be too general to be useful.
netic field to illustrate the phenomenological framework.  However, our results suggest that if we restrict our attention
Macroscopic or phenomenological variables are definedo simplersystems, the existence of a phenomenological
by an appropriate averaging. Depending on the averaginthermodynamitframework describing them is conceivable.
method, we have different phenomenological frameworks There are dynamical and kinetic approaches to study fluc-
(even for equilibrium systemsEquilibrium thermodynamics tuations around nonequilibrium steady sta@s11]. Some
chooses ensemble averaging. In this paper, we choose tinoé these theories are beyond local equilibrium assumptions,
averaging for technical simplicity. Our model system is pe-and quite general, but still the distance from local equilib-
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rium cannot be large due to its perturbative nature. Our ultirelation for time-averaged quantities. For spatially extended
mate aim is to relate macroscopically experimentally observsystems in local equilibrium, Eyinkl9] recognized the re-
able quantities with each other as in the standard equilibriuntation of Graham’s work tgensemble theoretical. D, and
thermodynamics. As far as macro-observables are definabf@oposed a minimum excess work principle for the probabil-
(as, e.g., time averaged quantijieso particular closeness to ity of spontaneous fluctuations in the ensemble theory of
equilibrium is required. steady states. An analogous principle has been observed by
The paper is organized as follows. In Sec. Il, after a sumRoss and co-workef1].
mary discussion of relevant backgrounds, the generalized A LD principle arises, e.g., in the following simple con-
fluctuation entropy function is introduced to characterize theext[20]. ConsideN independent and identically distributed
fluctuations around the steady state. Its existence is guarafiid) random variable¥X;, i =1,... N. Let the mearX;)=m,
teed by large deviation theory, which allows us to construcand define the empirical average wg=N"'3 N ,X;. The
the entropy function from the nonequilibrium entropy for weak law of large numberg22] tells us (if, for example,
Langevin equations, which was studied long ago by GrahaniX?) is finite) that yy—m asN— in probability. Crame
[12]. Our model system, a coarse-grained description of §24] proved the following refinement of the law:
uniform magnetic particle under an oscillating magnetic
field, is introduced in Sec. lll. Its generalized fluctuation en- P(yneA)~exd —NI(A)] as N—x, (2.2
tropy is computationally constructed in Sec. IV. The model
system can be thought of as a model of a magnetic domainyherel (A) =inf, . Al (X). The functionl (x) is called therate
or a small magnetic particle, dispersed in an inert solid undefunction (generalized entropy functigror the Crame func-
an oscillating magnetic field. Both should be realized experition (as proposed by Friscf25]), which is a non-negative
mentally without difficulty. In Sec. V, we discuss the linear convex function with global minimum at=m [i.e., I(m)
response about the steady state. This furnishes an experimen®]. Roughly speaking, we say the LD principle holds Xgr
tally accessible method to observe the generalized entropf (2.2 is valid.
function for fluctuations. The dissipation variable and its re- Thus the relation of2.1) and the LD principle for space
lation to the state space for the driven system are discusseerage(which is actually the ensemble average for macro-
in Sec. VI A. Various susceptibilities are introduced in Sec.scopic systemsis explicit. However, it should be clearly
VI B, followed by a discussion of Maxwell relations and Le recognized that purely phenomenologically, we cannot assert
Chatelier Braun principles in Sec. VI C. Section VII dis- that the rate function for equilibrium fluctuations can be
cusses the relevance of the asymptotically computed genecomputed with the aid of equilibrium thermodynamics as
alized entropy to nonasymptotic realistic situatid¢fisite ob-  (negative deviational entropyss, because the underlying
servation time, not small noiseNVe summarize our results in statistical modelequilibrium statistical thermodynamicts
Sec. VIII, which also contains some discussions on the prelacking. Therefore(2.1) is a phenomenological postuldt.

requisite to construct the full thermodynamic theory. There is an analogous theoréBanov’s theorerfi26]) for
the empirical distribution ofyy (the so-called level-2 LD
Il LARGE DEVIATION FRAMEWORK principle [18,20). In this case the LD principle reads
The fundamental relation for the probabilities of fluctua- P(feB)~exd —NI(B)] as N—oo, (2.3
tions in equilibrium statistical thermodynamics is the
Boltzmann-Einstein relatiofil3] wherel (B) =inf; _gl (f ). The rate functiotal) I (f ) is given
by the Kullback-Leibler entropy
\%
P~ex;{k— os|, (2.1 f
B I(f ):f dx fln(f— , (2.9
0

where s is the increase of entropy densityote thatds<0)

due to fluctuationy is the volume where fluctuations occur, Wherefy is the true(density distribution function.

andkg is the Boltzmann constant. The above relation is an Consider a stochastic fielg(x,t) with a sampling mea-

example of a large deviatiai.D) principle as pointed out by sureW on the path spacg.e., the probability of a bundleor,

Lanford [14]; an elementary discussion of the principle is Mmore precisely, a cylinder seh of paths(histories is given

given below for convenience. The LD principle is the math-Py W([A]). A functional version of Sanov's theorem tells us

ematical essence of the probability-entropy relation for equithat the LD rate functiofl) | characterizing the fluctuations

librium fluctuations(however, see the comments bejow  Of the path probabilityP (i.e., the empirical probability of a
A dynamical analog of the relatio(2.1) for linear irre-  bundle of pathsA, P[A]) is given by

versible processedoseto global equilibrium was introduced

by Hashitsumé15] and also by Onsager and MachlI{®]. I[P]=tr P In(P/W), (2.9

Graham later generalized the theory for arbitrary nonlinear

processes far from equilibriufii2]. A general LD theoreti- Where tr(tracg denotes the sum over all the histories of the

cal interpretation of these nonequilibrium generalizationgorocess.

was proposed ifi17]. Markov processes satisfy a LD prin-  Suppose the stochastic process is described by the Lange-

ciple [7,18,20,29. Hence a wide class of nonequilibrium Vin equation of the form

systems that are modeled as Markov processes can have a .

statistical framework analogous to the Boltzmann-Einstein d(x,1)=b(p,t)+ea( ) n(x,t), (2.6)
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where ¢(x,t) is a stochastigvecton field, b(¢,t) a time-  wheref denotes the time average of the observable ayer
dependent (vector-valuedl function of ¢(x,t), o(¢) a f=7"1f7dt f(¢(t)). The_computation of the generalized
(matrix-valued function, 7(x,t) the zero mean Gaussian entropyl for a fluctuationf involves minimizing the action
white noise with( 7(x,t) n(x’,s)) = €?8(t—s) 8(x—x"), and  S(¢(t)) over all pathse(t) under the constraint(¢(t))
the parametee is the overall strength of the noise. The true —  The optimal path (or path of least actionfor a given
distribution functioral) is known to be asymptotically in the gatisfies the Euler-Lagrange equation

small e limit [12,27,2§

d
—dzl=4d,4L, 2.1
WL )]“GXF{—ésowﬁO[ez] . @D gt "=~ 214
_ ) where
where ¢( ) denotes gspace-timg history (path of the pro-
cess defined by the Langevin equationS; 1 . .
= [ o, bil (x,t)]dx dt, and L=3 > aij[ ¢i(t) = bi((1))1[ p;(t) —b;(h(1))]
1 : :
S=3 | = adeO)-bIsONSO-ble()Tjx dt FATB). (219
: (2.8 The rate functionl is usually referred to as an entropy

function(al) for the system. However, the word must be un-
with a; =(2koikakj)*l. The rate function for an observable derstood just as used in the thermodynamic theory of fluc-
(f(()))e, where( ). denotes a functional of [which may tuation. As is clearly explained in CallgB8] and above, the
be the mere expectation value fafor may become another entropy governing fluctuations isot interpreted as a state
function of (x,t)], is obtained by minimizing[ P] over all P function defined on the thermodynamic state space without a
under the constraint P[H( )1f (H())}=(f(&H()))c(Xx,t). The  phenomenological postulate, although statistical thermody-
result is the rate function, given as the Legendre transform ofiamics justifies this postulate. Without any postulate we can-
the generating functional[\()]: not directly construct equilibrium thermodynamics purely
phenomenologically from the study of equilibrium fluctua-
_ _ tions alone[30]. As was first noted by Takahasfir], the
HSONeI=HIN)] f dx dEAC DTS )eXD), so-called thermodynamic formalism for dynamical systems
(2.9  [4-6] is a LD principle for time-averaged quantities. We
must clearly recognize that the so-called thermodynamic for-
malism for dynamical systems has been used only to de-
1 scribe fluctuations, and not to understand the difference be-
WIN()]=—Intr exp{ -2 So+S;+O[ €?] tween different dynamical systems.

where

I1l. A MODEL SYSTEM
- f dx dEAD(F(SO)exD)| (210

A driven system for which we wish to apply a general
theoretical framework is a magnetic spin system under the
influence of a time-dependent magnetic field. The system

5 was considered by Zimmef32] using a time-dependent
m‘l’[)\( )1=(F(d( )))e(X,1). (2.1)  Ginzburg-Landau equation to model the dynamics of the

’ spatially coarse-grained magnetization. We study the model
at the mean field level, but with a small noise. The model
takes the following form:

and\(x,t) is determined by

If spatial fluctuation may be ignored, we may suppress th
spatial coordinates in the above formalism. For time-
dependent steady statésg., periodic states in our systgm
of a small particle, it is natural to characterize its state with
time-averaged quantities. Hence, it is also natural to stud
the fluctuations of time-averaged quantities. In this case th
Lagrange multiplier functiom becomes a constant. If we are
interested in small noise systems, we may rely on the lowe
quer result of Eq(2.7) (a saddle.point approximation for the ing the unrenormalized critical temperature Tifis close to
limit e—>Q to evaluate rate fqnctlohsThus the form_ulas'cor— T,; constant ifT is sufficiently away fromT,]. 7(t) is a
r_es_pondlng to Eq(2.9) read in the large observation time | Lo (oise sourcén(t))=0, (7(t) (")) = e25(t—t").
limit If the spatial average of the magnetization is taken over an

; _ infinite volume, then there should not be any noise. We as-
50+)\f dt f(¢(t))}—}\f, (2.12 sume that our system is ndinacroscopically very large.

0 Therefore, there is a residual noise. In the following we re-
scale the field¢ and time to express the dynamics in
terms of the minimal set of parameters=rgyy/ o,
h=ho(ugy /)2

b=~ yo[ —Top+Ugh®+hg cogwt) ]+ en(t), (3.

Where the fieldg(t) denotes théspace-averagednagneti-
‘Eation,h(t) =hg cos(wt) is the external magnetic fieldg is
a positive constanty, is the kinetic coefficient, and, is the
%mperature parametgoroportional to T.—T) with T, be-

I(f)

1.
—inf
.

P(ﬂwexp{—;@ |(f_)} 2.13
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15 ‘ - In this calculation, for simplicity, we look for the infimum
among the set of functions periodic irr2This does not give
o the true infimum, but the discrepancy for not extremely large
P deviations is very small. This is the reason why the integra-
wl x”/ | tion range of Eq(4.2) is (0,2m). The parameters,y,,u, are
e set to unity in what follows.

- For h=0 (i.e., the equilibrium stajethe infimum is real-

- ized by a_constant pati(t)=M, yielding the rate function
o I(M)=(rM —M>)%/2 in the Z phase, and in the NZ phase
05 | - 1 outside the coexistence regitsee below. For nonzero driv-

P ing fields, the Euler-Lagrange equation for the optimal path

cannot be analytically solved. One way may be to solve the

equation numerically, but here a direct method is used, a

oo ‘ . deterministic steepest descent methj@a]. The field ¢(t)

0.0 05 10 15 (te[0,277]) was sampled along the time axis with a time
f spacing 6t=0.01, and with periodic boundary conditions.

= f— —_ 3
__FIG. 1. Plot of the_zero-noise phase boundary separating theFrom the most probable statgr=0, $()=ré—¢

M =0 (Z phas¢ and theM #0 (NZ phas¢ phases. The upper region *+hcos@)], the Lagrgnge multipliex was slowly increased
(i.e., largeh) is the Z phase, and the lower region the NZ phase.above zero. The optimal stagt) corresponding to the po-

The transition is continuous throughout the phase diagram. tential S, minimum for a giver\ was then used as the initial
state for the next trial with a slightly larger. The resultant

12 rate functionl (M) is given in Fig. 2.
) 7(t). (3.2 In the Z phase, the flatness of the rate function near its
optimal value indicates the importance of correlation along
Notice that the noise strength effectively decreases witfihe time axis. Thus the rate function becomes flatteneld as
increasing frequency, so that the small noise th¢bey, the ~ moves from larger values toward its critical vallig=0.93.
saddle point approximation used to obtain Ej12] should Compareh=1.2 andh=0.975. As in equilibrium, the rate
be more accurate for larges. For 2a/w smaller than the function equal to the generalized entropy function, becomes
typical relaxation time of the locally course-grained magne-lat at the symmetry breaking point.
tization, the system cannd@bcally) equilibrate over the time Even in the symmetry-broken pha&a our case the NZ
scale of the field. Consequently, the system is intrinsicallyphase, | must have the convex shape analogous to the free
away from local equilibrium, and there is no phenomenologyenergy of coexisting phases in equilibriuhs:0 in the coex-
available. istence region between the steady stdfes example,M ~
In the zero noise limit, the system undergoes a phase tran-( 35 forh=0.9 in Fig. 2. For ordinary Markov processes,
sition from a zero time-averaged magnetization phede gych as in our case, the convexity of the rate function is
phasg to a nonzero time-averaged magnetization pH&&& gy aranteed by the LD principle. However, just as the free

phase. Its phﬁ\se diagram is illustrated in Fir?' 1 forhconve— energy in equilibrium statistical mechanics with a finite av-
hience[33]. The transition between theand the NZ phases oo qing volume, if the averaging timeis not infinite, then

IS a l(_:orétlnu?:us(segond o_ltde)_lr_pha;]se tr_an5|t||0nhfeozr a:]l field the rate function for time-averaged quantities can be noncon-
amplitudes. For <0 (.e., T>T,) there is only t PNASE.  yex. In the infinite time limit the optimal path for any fluc-
tuation in the coexistence region involv@saulti) instanton
paths connecting the two attracting statelsl,, which yield
zero action asr—o. Note that the potentidl here is com-

We wish to study the probability of fluctuation around the puted in the limite=0 first, and thenr—ce. In this limit, the
steady state of the driven magnetic model2). Here we states—My<M <M, are realized as an average over an
mean by “steady state” any state that has well-defined longensemble of multi-instanton paths; for a given sample we
time averages. Steady states of our model are periodic. In thenly observe one of the “pure” statesM,. In the reverse
small noise limit, the rate function for the long-time averagelimit, 7o first, thene—0, | would always have the unique
magnetization of Eq(3.2) is given by[see Eqs(2.8) and  minimum at the zero state.

UoYo
P

d=rp—¢3+h cogt)+ €

IV. GENERALIZED FLUCTUATION ENTROPY
FOR TIME-AVERAGED MAGNETIZATION

(2.12] As is discussed in the preceding paragraph, if the rate
. function is computed for not very long time, then it is not
[(M)=——=—inf S, (4.7 convex in the NZ phase, and behaves just as the local equi-
Yoo 27 librium free energy for the ferromagnetic phase. If the aver-

aging time sparr is not significantly longer than the transi-
tion time to jump between the attractors, then we have a
nonconvex short-tim¢local in time rate functionJ resem-

27 [¢— ré+¢3—h cogt)]? bling a Landau-type function with a nonconvex portion con-

Sp=| dt > . 4.2)

0

where inf;, implies to search the infimum ove#(t) whose
time average is equal tel, and
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necting the two statesxM, but practically identical to the In equilibrium states, statistical thermodynamics tells us
true rate functior(for long-time outside the coexistence re- that the susceptibility is related to the variance of equilibrium
gion. fluctuations as

Let At be the averaging time to obtain the “local” rate
function J(m) for the “order parameter’m defined as the IX.
time average oveAt. Then, the probability of observing (OX;6X;)= _kB_' , (5.2
is estimated ad?(m)~exd —AtJ(m)]. We may consider IF; (F
—InP(m) as an equivalent of the free ener@hemical po-
tentia), which governs the dynamics a at the time scale where{X;} is the set of fluctuating extensive quantiti¢s;}
?t];nﬁ:'d;'encg’ l;]ltjét a_:,) in ﬂlie rgodeling tc_)f dynamics, as.tthethe set olf corresponding thermogynamically gonjugate'inten—

-aependentiinzburg-Landau equation, we may Wite ;. o guantities with respect to entrof8/, and the subscripts
{F} indicate that all intensive parameters excépare held

4.3 constant. The fluctuation contribution to the entropy change

J J
m(t+At)—m(t)oc — In P(m)=—At — J(m),
Jm Jm can be written as

which has an indistinguishable form from the us(ata)

equilibrium Ginzburg-Landau equation based on the local 1

free energy(under local equilibrium assumptipnHere the —85=3 > s 0Xi0X;, (5.2
proportionality constant is related to the noise level, i.e., an

analogue of the fluctuation-dissipation theorem holds. _ .
When a coarse-grained model is used in statistical mewheres;; can be computed thermodynamically according to

chanics to describe nonequilibrium phenomena such as phakél- (5.1). The essence of the phenomenological postulate of
transition kinetic§34], often a question is raised whether we €quilibrium fluctuation theory is that the Taylor expansion
can use théLandau-Ginzburg type“free energy density”  coefficients of the LD rate function for fluctuations are de-
in nonequilibrium cases in which the deviation from equilib- termined by the thermodynamic responses of the equilibrium
rium is sometimes not necessarily small. The above consicstate around which fluctuations are being studied.

eration tells us that the so-called Landau-Ginzburg free en- Mimicking this equilibrium postulate, we formulate our

ergy density need not be interpreted as the conventional fregh€nomenological postulate as follows. The Taylor expan-
energy density. It is legitimate to use this type of function insion coefficients of the rate function around the mean can be

much wider contexts as long as we studspace-timg ©obtained from the response of the phenomenological vari-
ables to “thermodynamic” conjugate forces. Implicit in the

coarse-grained observables. ! .
postulate is the existence of a proper state space for the

V. ELUCTUATION-RESPONSE RELATION steady stategabout which we give a detailed dlscussm_n in
Sec. V). The postulate guarantees that at least locally in the

Suppose an actual small magnetic particle is given. Exstate space, we have a generalized ent&gpyd its variation
perimentally, it is not easy to observe the rate function. Thiss2, around a given steady state is {inegative rate function.
is true even in the computer simulation of the model beingThat the susceptibility can be determined by a response is, as
discussed here. The difficulty of experimentally obtainingwe shall see soon, certainly correct. However, the postulate
rate functions for large fluctuations was clearly recognized iralso requires that the conjugate force that elicits the correct
[17]. However, if an analogue of thermodynamic fluctuationresponse does not perturb the system out of the state space.
theory is valid, then we can experimentally easily determineThe latter condition is less trivial, and will be discussed in

the rate function at least for small fluctuations. Sec. VI.



55 PHENOMENOLOGICAL FRAMEWORK FOR FLUCTUATION . . . 181

Let us analyze the process of computing the rate functiowery close to the most probable response when noise is
| for the time average df(¢), where¢ obeys Eq(3.2). The  small, as in our case. From this, we obtain
Euler-Lagrange equation for the variational problem

inf 75So(#) with the Lagrange multipliex reads[we con- _d o {Ag()

sider the simple case of additive noise witk1, and a sca- 93Pl Po(V): 1=~ G IN TGy | (5.8

lar drift b(¢,t) in Egs.(2.14 and (2.15), as in our model

magnetic systefin where () denotes the average over all samples. Depending

. on the noise level in the experimental sample, one would
¢=b(,1)dyb(,t) +3ib(,1) +Ndyf(h). (5.3 have to perturb the system periodically, and measure the av-
erage response. Perturbing the system every couple of peri-

One can rewrite this as two first order equations: ods is sufficient here as we consider the aase,yy/w=1,
. which implies that the time scale for the magnetization re-
¢=b(¢,1)+Ag, (5.4) laxation (=~rqy,) and the period of the external magnetic
, field are of the same ordén this example the period is.
9=—9dyb($,1)+d4f(). (5.5  Figure 3a) exhibits a typical sample o(t)[=M(t)] for

. . . ) the system parameters=1, h=1, and a noise leved=0.05.
Since S, is the generalized entropy functional on the pathUpon perturbing the systertwith a small force~0.001 in

space, a natural interpretation af is the (“thermody-  agnitude, the measurement of the relaxation yields
namic”) conjugate force of the “thermodynamic” variable (AM(t))/{AM(t=0)), illustrated in Fig. 8). The relax-

f(¢). Note thatA=0 for the most probable pattsteady  ation rated,, b[ #o(t),t] is then obtained easily from Eq.
statg, so that we shall sometimes wrike=A\ to emphasize (5.9 0

that \ is the external field for aeviationfrom the steady . o
state(i.e., \ is a generalized affinity (2) Computation ofy(t): Given ﬁ%b[(bo(t),t], one has to

Looking at Eq.(5.4), we may interpreh g as the external S°Iveé Eq.(5.7) for g(t). We need a steady(t) (that is, the
force we can experimentally impose to produce the desirefPnd time solution. Notice that because of the negative sign
deviation. Sinceng perturbs the steady state, the deviation" the linear term, the equation fgy(t) is intrinsically un-
corresponding to the one in E¢5.1) can be computed from stable. To obtain the steady stat_e solutlon_g()'r), one can
the linear response of the most probable valf(ep) expandg(t) (and d, bl fo(1),t]) in harmonics of the fre-
to Ag. Thus the postulate of the fluctuation-response relatiofiuency of the magnetic fielthere set to unity and solve the
is almost vacuously true for the Langevin model. resulting linear matrix equation. As mentioned earlier, for

The shape of the rate function near the most probablémall fluctuations, restricting the infimum to periodic func-
value is quadratic, that is, the distribution of small fluctua-tions should be a very good approximation, so that the peri-
tions is roughly Gaussiataway from critical points The  odic ansatz to solve Eg5.7) is reasonable.
quadratic approximation to the rate function is obtained eas- (3) Determination of the response: The obtained force
ily from the linear response. The Euler-Lagrange equationd(t) is scaled with\ and applied to the original system. The
or equivalent Eqs(5.4) and (5.5), linearized about the most responseAf yielding x=—lim,,_oAf/AN is measured; or

probable pathp,(t) =b[ ¢y(t),t] reads more directly, one can solve the linear equati@) for
_ A¢(t), in the same manner as described in s{2p and
Ap=A¢pd,b(po.t)+g, (5.6)  obtainAf=4, f(po)Ad(t).
The zero noise susceptibility for the magnetization com-
g=-— ga%b(% A+ 5¢0f(¢0), (5.7 puted from the linear response theory agrees reasonably well

(as expectedwith the steepest-descent optimization results.
whereg= ¢ +A\A¢. We introducey through writing the rate The agreement i_mpro_ve;s_asbecomes narrower, that is, as
function for f=f(#) to the quadratic order as(f)=[f € time correlation diminishes. _
—T(xo)]%/2x. Notice that\=AN is the conjugate parameter . In the NZ phase, we can .study the fluctuation aroynd a
for f when we compute the rate function. Hengemay be given phase, say, the up-spin phase. The rate function for

. 1.-1 _ 2 .
Compie s (1 regonss i e st 100 aat). gnucuaions b i Kot ey
x=—lim,, oA /AN, whereAf is the deviation off due to ge mag y up-sp :

the perturbation in Eq(5.6). The susceptibilityy defined in this way both in the NZ ari

In the limit of zero noised,, b[ ¢o(t).t] is given once we phas.e_s. behaves as shown in .F_ig. 4. _The magnetization sus-
b LTON) 9 ceptibility diverges at the transition poitti=~0.93. Near the
know the model and consequently the attractor pa#ft).  transitiong(t) (and y) becomes large, so the first order ex-
Operationally, however, we do not kndebservg the func-  hansion is suspect to break down. Hence, the data near the
tional form of the modeli.e., b(¢o.t)]. Therefore, a more phase transitiom=0.93 are not likely to be very accurate.
direct procedure accessible experimentally is desirable. We |, Fig. 5, we illustrate the difference between the “ther-
Phoewfcgjlllg\l/lvrilr?gt?kgsrezrgfss:re to determine which involves  modynamic” susceptibilityy defined above and the usual
S ) . response to a constant fieddi/dH|,_.,. The discrepancy is
(1) Determination Oﬁ%b[%(t)’t]z The direct method to quit% large near the transition; n(|)?e tohe log-log pIF())t neér the
obtain d, b[ ¢o(t),t] is to slightly perturb the system and transition. Note that even in the case of zero oscillating field,
measure the relaxation of the respomds$(t). We accumu- the susceptibilities are different. This is due, of course, to the
late results from many runs to obtain the average, which igact that we are considering the fluctuations of the time-




182 MARCO PANICONI AND Y. OONO 55
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time (sec) M (t) for a noise levek=0.05. From the average
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0.002 function (AM (t))/{AM (t=0)).
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averaged magnetization. In  the h—0 limit, t<0 (g=0 for t>0). For gradient dynamicsf= —dH), the
g=1/b'(My)=—1/2M,, with M, being the equilibrium application ofg(t) to produce the right fluctuation becomes
magnetization. The thermodynamic susceptibility in the zerasuperfluous; knowledge of the potentidl= 1, which defines
oscillating field limit becomesy={1/d4 b[¢o(t),t]} 2 the the dynamics, automatically dictates the correct coupling.
square of the usuaingle-timesusceptibility. More gener- However, without knowledge of the steady state measure, we
ally, for a time-independent symmetric regression matrixc@nnot prescribe the needed force to perturb the system.
a¢jbi(¢0,t)EKij . and a constant diffusion matrix Thergfore, one must proceed by measuring (treura) re-

aj =(Ek0ik0k,’)7l= 1 [see Eq(2.8)], the long-time suscep- Iaxatlona%b[(ﬁo(t),t] to the steady state, and compgig)

tibility is given by the square of the single time susceptibility Via Ed. (5.7).

[35].
The fluctuation-response relation discussed above is for VI. THERMODYNAMIC FRAMEWORK
the fluctuation of time-averaged observables. The FOR FLUCTUATION

fluctuation-response relation in instantaneous observables
can be studied analogously, although considering instanta-
neous quantities in the present context is somewhat less natu- The fluctuation formula5.2) tells us that to have a full

ral. For a given fluctuation at some time, eig=0 [for this  thermodynamic fluctuation theory we must first set up the
case\(t)=A4(t)], the solution forg(t) at the linear level state space properly even in equilibrium. For nonequilibrium
becomesg(t) = —a¢0f(¢o)|t:0 exp{—fgdta%b[qso(t),t]} for  thermodynamics obviously we must have a larger state space

A. State space
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than the equilibrium counterpart. For example, in the ex-set up state spaddowever, if confined to systems slightly
tended thermodynamid86] not only the extensive quanti- away from local equilibrium, the state space in this theory
ties but also their time derivative®r the corresponding may be properly set yp

fluxe9 are regarded as state variables. Here we will not dis- The above consideration tells us that it is not wise to try to
cuss in detail the condition for the state space to satisfy irfonstruct a general thermodynamic framework for a system
order to support a thermodynamic or phenomenologicaPnde_r an arbitrarily g_eneral nonequilibrium c_ondition. Thus
theory. It is clear, however, that a point in the state spacd? this paper we confine ourselves to the variatiom ¢am-
must reasonably uniquely specify the macroscopic state dplitude of the oscillating fieldand a static fieldd, under
the system. Operationally, the requirement is that there is gxed frequency and f|xgd noise. For our magnetic system, its
one-to-one correspondence between the set of macroscopil1e-averaged state without perturbatidre., the equilib-
cally controlled parameters and the macroscopic states. {Luemti?rgzt-?a\l/sef;;égcﬁgéﬁgtigéttigﬁ t'_rpﬁégvggg%ggn‘iigzrlg%iﬂg
effgc\ge gggvgtﬁg'téﬁ%?ilé;feed”ﬁgﬁiﬁggﬁ;%aeun%nrhg,zmrﬁﬂﬁt beequilibrium internal energy and magnetization, respectively.
faken o account, and oven f e deciare hat or obsens e 5 o1 8 Shusoide pertbation. We charge
ables are time-averagddr ensemble-averaggdjuantities,

X o= ° h (if H=0). However, the various steady states forh,
the state space is generally infinite dimensional to accommasyoyld be considered macroscopically distinct; the dissipa-

date the whole variety of changes of the state. It is obviougion (heat flowing out of the magnetic system into the heat
that the extended thermodynamics does not have a properpath in-

X T
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200.0 | 00O x i
050000000
% x % * FIG. 5. A comparison between the system
x X 10 X x ) susceptibility x, and the response to a constant
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é’ 00 03 g i notesy, and the circles denotéM/dH. The in-
50 8 8 B .
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~ 1000 L ' ' 20,9 %0 e high field region, and the inset on the right hand
’ o side is a log-log plot as in Fig. 5. The slopes of
’ i x the upper and lower lines through the circle data
201 % « 1 points in the log-log plot are about 1 and 1.5,
(o} i
o respectively.
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creases monotonically with and is macroscopically observ- x,=— lim (AM_/AA)FO:((M_—M_o)z%:o, (6.5
able. Hence, it is clear that more variablgelated to the AN—O

dissipation must be included for a complete macroscopic

description. We believe in order to specify a steady state, one T -~ L /(A_A2

more state variable is needed that does not have any equilib- X A“VTO(AQ/AV)“:O {(Q=Q0)h=o- (6.6

rium counterpart. In this paper we choose it to be the time-

averaged energy dissipation ragedefined by The susceptibilitiesy, ,x, refer to a passivéunconstrained
— h (2= sampling of the fluctuation$1,Q, as in any experimental
Q=— f dt sin(t) ¢(t). (6.1)  measurement of the susceptibility by observing the natural
27 Jo fluctuations.
The relation between the two sets of susceptibilities dis-
One may conclude that the state space of our magnetieussed above follows easily_from the Legendre transform of
system driven by a fixed frequency sinusoidal magnetic fieldhe rate function¥(\,»)=1(M,Q)+\XM+vQ (a general-
is spanned b, Q, andE, the time average of the energy in jzed Massieu function
the system. In_the following discussion of the fluctuation, we

allow M and Q to fluctuate under the condition that the X+t xoxa
conjugate variablé to the third state variablE is fixed. The Xo=——— (6.7
rate functionl (M,Q) we study below is the Legendre trans- X\
form of the full rate functionl (M,Q,E) with respect toE. —
Since( is fixed to its steady state val@&=0), | (M,Q) is the __ X"t 6.9
generalized entropy for the marginal distribution fdrand Xm Xv ' '
Q. The rate function (M) _studied in Sec. V is that of the
marginal distribution foM. Y= XuXn

X= T (69)

B. Various susceptibilities

In the extended spaceM(,Q), the rate function at the Operationally, the susceptibilitiegs, xw, x, andy are de-

guadratic level is given as fined as
- 1 - _ 1 — _ . - _
- (M- 2. T (0-0.2 xo=— lim (AM/AN)o-52, (6.10
(M.Q)=5 = (M=Mo)*+ 5 =(Q~Qo) o=~ Im =%
1 YR N~ . . J—
Y (M—=Mg)(Q—Qo), (6.2 xw=— lim (AQ/Av)v_w;, (6.11
Av—0
whereM__O,.@ arEthe mgst probable valuest,Q, and the x=— lim (AaAMM_:M_: ~lim (AM_/A Vo o
susceptibilitiesyg and x,_refer to fluctuations sampled un- AN—O 0 Avs0 0
der the condition of fixed) and M, respectively; that is, (6.12
xo=((M—Mg)*o 5, (6.3 X=— lim (AQ/AN),_o=— lim (AM/Av), _o.
AN—O Av—0
N o (6.13
xw={(Q=Qo)*)m=r;- (6.4)

C. Maxwell's relation and Le Chatelier—Braun principle

In the above two formulas we keep the other state variable
for steady states

fixed when computing the susceptibility of eithit or Q.
However, as in the usual equilibrium theory, the susceptibili- Various “Maxwell-type relations”[such as the second
ties under the constraint that tbenjugateforces of the other equality in Eqs.(6.12 and (6.13] follow from the integra-
variables are fixedlas in Eq.(5.1)] are the more useful and bility conditions ofl, and its associated Legendre transforms.
experimentally accessible ones. This latter case arises in odio interpret these relations as Maxwell relations in the con-
theory in the following way. ventional sense, we must use the phenomenological postulate
In Sec. V, the susceptibility of the magnetization wasthat asserts the existence of a state funcigiM,Q), for
studied as a response to a perturbalgrit) (which we shall  which &2 due to fluctuation is.
write asAgy); in this case there is no constraint on the To make contact with the actual steady states, the math-
variableQ. \ is interpreted as a conjugate generalized forceematical conjugate parameteps,r) must be related to the
(or affinity) to the state variabl#. Similarly, the fluctuation physical fields that naturally perturb the system. From the
of the dissipatiorQ) can be studied as a response to the forceexperimental or operational point of view, the natural pertur-
vgq. Herevis a scale factor that is the conjugate forc&Xo  bation variables in the space of steady states for our model
andgq is given by Eq.(5.7) with f=h sin(t) #(t). We shall magnetic system areH(h). Locally, the relation between
denote the susceptibiliies computed with the forceshese two sets is given by the matri@=—A"!B as
Agu(t) or vgo(t), respectively, by (\,»)'=C(AH,Ah)T, where
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A (XV ;7) ((o?M/aH)h (IM/dh) X2 X - (6.19
o (9QI3R)  (9QIoh)y (6.1 In general, the Maxwell relation and the Le Chatelier—
' Braun Principleg6.17—(6.19 are somewhat tedious to ap-
As mentioned in Sec. V, the phenomenological postulately, as the constraints on,» must be mapped to the corre-
is valid if the conjugate forcegaffinities) \,v perturb the sponding changes inAH,Ah using the information
steady state to a new state that remains in the state spag@ntained in the matriB and A, both of which vary as a
Thus we should require that the inverse of the ma@ix*  function of the steady state. The usefulness and practical
exists, which makes the map betwe@nv) and (AH,Ah)  implications of the above relations remain to be seen. How-
one to one. Any path in the state space induced\py) can  ever, we can easily understand the main feature®.af7)—
then be mapped uniquely to a path in the, ) space. The (6.19 in the following fashion.
convexity of the rate function automatically implies that the  Consider first the two relationg.18 and (6.19. If we
matrix A is invertible. The existence & ! follows from the ~ change (decrease \ to increaseM, Q should decrease.
requirement of a proper state space. This means, from thehus, if we wish to keel® fixed for the same change M
local relation AM,AQ)=B(AH,Ah), thatB should be an should change by less. Similarly, for a changevirkeeping
invertible matrix for each steady stafiee., one-to-one cor- M fixed should result in a smaller change @ than if we
respondence between the system parameters and mach®ld A constant. -
scopic states Of course, one can never verify the existence The relation ¢M/dQ),_o>(IM/dQ),_o is slightly
of B™! for every steady state. Nonetheless, it does seermore awkward to explain, as the effect of the proces$ or
likely that our state space is properly set up for the following»=0 is less intuitive. Generally, however, sincés the con-
reason. o jugate force tdM, it is reasonable to expect a smaller change
The behavior of the state variablé$,Q in the space of in AM under the condition=0 than for the process=0.
steady states defined by variationshyH is typically the

following: M increases withH, and decreases with; Q VII. FINITE AVERAGING TIME AND FINITE NOISE
decreases withH, and increases witih. Therefore, an in- . _ .
crease inM should usually result in a decrease @) and We have been mainly concerned with the long-time small

vice versa. Furthermore, the changeNdfwith H (h fixed) ~ noise limit form of the rate function which is equal to the
does tend to be larger than the magnitude of the chantye of generalized fluctuation entropy. It corresponds to the equilib-
with h (H fixed), and similarly with theQ case[i.e., rium entropy in the thermodynamic limit. In the equilibrium
[(Q1ah) 4 |>](9Q/dH)|]1. Thus, it is likely that the condi- thermodynamic_ theory of fluc_tuations, it is postulated that
tion 9(M,Q)/d(H,h) #0 is satisfied, which implies the ex- the macroscopic entropy function can be successfully used to
istence ofC"1=—B~1A. The existence oB~! was con- describe the spatiallymacroscopically small scale fluctua-
firmed numerically for our model Eq3.2), at least for the tions. If the postulate were significantly at variance with re-
finite number of steady states that were chedkedghly the  ality, then thermodynamic fluctuation theory would have had
range G<h, H<2, in increments ofAh, AH=0.1). little practical relevance. Thus, it is a practically important
From the above discussion, it seems plausible that thguestion to ask how reliable our limit rate function is for
phenomenological postulate is valid for our system. Variousshorter times with larger noises. . .
Maxwell relations and stability conditions automatically fol-  In order to study the reliability of the limit rate function,
low, the most typical ones being the aforementioned relawe studied the behavior of the susceptibility from real time

tions in Egs.(6.12 and (6.13. From an appropriate Leg- Simulations of the stochastic dynamics E82). The suscep-
endre transform of, we obtain other relations, such as tibilities were studied for small nonzero noise levels, and for

the averaging time a finite multiple of the basic period=2
This stochastic dynamics was explicitly solved with the aid
' (6.19 of a fourth order Runge-Kutta scheme with a typical time
incrementdt=0.005. After an initial relaxation time for the
or system to settle down to a steady state, statistics ofnthe
period average were takdne., 7=2n). The sampling of
- X the fluctuationsM,Q corresponds to a passive samplifig
(0QIM) —g=—. (6.16  the sense explained in Sec. V).BHence we are measur-
Xv ing x,.x,- In order to compare different data sets, the

Using the stability conditiorii.e., the stability condition of Scaled susceptibilities 7(€?)((M ~M)A, -0 (7€3)((Q

x|

(IM13Q)y—o=— (vl IN)g=

the steady stajey?— x,x,<O0, which follows from the con- —Qqg)?)|x=0 are plotted for finite noise and finite averaging
vexity property ofl, the above two relations can be rewritten period. Each data set involved the sampling of about
as the inequality 10°~1C runs (n period averagés Some cases were also
o o checked for a sampling of $@uns. At least not very close to
(IM19Q) ,—o>(IM/IQ), —o. (6.17  the transition, we believe enough statistics were taken to get

an accurate value of the susceptibility.
More typical consequences of stability are Le Chatelier— The behavior of the susceptibility, ,x, for three different
Braun principles, such as noise levelge=0.01, 0.05, 0.1 with an averaging period of
10(n=10), is shown in Fig. 6. As is evident in the figure, the
Xv> X (6.18 noiseless theory is fairly accurdi@ least not too close to the
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6.0 ' ' riods at a noise leved=0.01. The circles denote the=1 data, the
100 — ‘ squaren=3, the starsm=5, and the crosses the=10 data. The
& E system parameters at¢=0, y=w=uy=r=1. Similar behavior is
o] " observed fory, and fore=0.05.
500 L " -
N . but the state may be chaotic or turbulent. Large deviation
Z " ST P theory tells us that there is a generalized entropy fuq(;mia)n
= 0 o8 o 09 0 (rate function that governs the fluctuation probability of
2 . time-averaged quantities.
20 L | We have proposed a phenomenological postulate that the
x Taylor expansion coefficients of the rate function are deter-
x & @ mined by the response of the steady state to perturbations
8 % exactly as in the equilibrium thermodynamic theory of fluc-
% N LI tuation. For models described by Langevin equations, a
00 &8 & 8 & o fs fluctuation-response relation follows trivially. The way to
h compute the rate function tells us what the natural conjugate

variables are for the observables whose fluctuations we

FIG. 6. The scaled susceptibilitya) y, and (b) x,; for  study. This point has been illustrated by a model of a mag-
€=0,0.01,0.05,0.1, and averaging period 10. The system param- netic system under a periodic magnetic field.
eters areH=0,y=w=ug=r=1. The star symbol is the zero-noise =~ Although the phenomenological postulate allows us to
result, the square=0.01, the circlee=0.05, and the cross symbol glimpse a possiblélocal) thermodynamic framework, still
the €=0.1 data. The inset on the right side @ illustrates the we cannot make a global framework. We have clearly rec-
behavior of the zero-noise long-timg near the transition, which  ggnized that the difficulty lies already in equilibrium states;
does seem to diverge. no phenomenology of time-averaged quantities has been

constructed, even for equilibrium states. Here we briefly dis-

transition for noise levels<0.05. Fore=0.1 there is a shift cuss some relevant basic guestions.
in the bifurcation of the dynamics to smaller and the data A natural question is the choice of the macroscopic ob-
begin to deviate significantly from the zero-noise theory.  servables(macro-observablgsto specify the macroscopic

For a fixed noise strength, the scaling yffor different  steady state. In other words, the question is: What is the
averaging periods is illustrated in Fig. 7. In general, the datgroper “thermodynamic” state space? This question seems
for the different averaging period&1=10,5,3,1 superim-  to have been paid no serious thought in nonequilibrium. For
poses well. In particular away from the transition there is aexample, Keizef37] introduces the concept of a physical
very good collapse of the data. Close to the transition thensemble that may be understood as an equivalence class of
susceptibility for largern moves towards the zero-noise microscopic states according to the macro-observable values.
long-time limit value. The idea sounds natural, but we must note that there is no
guarantee that the choice of the macro-observables being
used for this classification is a good macrovariable set to
allow a phenomenological description such as thermodynam-

In order to have some clues for a phenomenological oics (as intended in37]). As pointed out in Sec. VI the state
thermodynamic framework for nonequilibrium systems, wespace of the extended irreversible thermodynamics is also
have studied the fluctuation around “steady states.” Weinsufficient, although its state space may be sufficient for
mean by steady state the state whose long-time average lisear processe§.e., systems close to local equilibrigumn
well defined. In this paper we have discussed periodic statethe ordinary equilibrium thermodynamics, the concept of

VIIl. DISCUSSION
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state variables and state space itself should be understood psndent samples, but time averages of a single specimen
primitive concepts such as points and lines in Euclidean geerucially depend on the time correlation as illustrated in the
ometry. The crucial point is that the state space allows theontext of the rate function ifl7]. Perhaps the existence of
principles of thermodynamics to hold; we cannot arbitrarilythe gross discrepancy in fluctuations calculated by these two
choose a set of macrovariables and construct a thermodgveraging methods may be a good characteristic of glassy
namic framework. states. The discrepancy exists even in true thermodynamic
We must point out that even for equilibrium systems dif- equilibrium states: the rate functions for time-averaged fluc-
ferent kinds of thermodynamic formalisms are possible actuations and ensemble-averaged fluctuations are distinct.
cording to the averaging method to define macro-This implies that even if the state space is spanneH laynd
observables. The following observation sheds some light oiX;, the “entropy” needed to write down the generalized
the importance of the ensemble concept in statistical megibbs relation corresponding to E@®.2) ought to be depen-
chanics(contrary to the claim of M&38]). Let us consider a dent on the choice of the averaging method.
system under equilibrium condition. We may define the av- It is now clear that the ordinary fluctuation-response rela-
erage by a time average over a chunk of mateiéalen a tion (5.1) and the standard Gibbs relati¢8.2) are compat-
small cluster of spins should fospatial average at one in- ible only when the average is understood as the ensemble
stant, or ensemble average; any linear combination of differaverage as in the ordinary statistical thermodynamics. In
ent averaging methods is a respectable means to defirgher words, if we choose, e.g., the time averaging, then the
macro-observables. Independent of the method of calculatinfuctuation theory and the usual Gibbs relati@?2) are in-
the averagedthermodynamigquantities, the values of aver- compatible. However, this is not surprising, because the rate
aged energy and magnetization are intact, and equal to thnction in this case is, as we have seen, (6}5S. The
internal energy and magnetization, respectively, of the stanactual form corresponding to E8.2) must be the following
dard equilibrium thermodynamics. Hence, the standard thergeneralized Gibbs relation:
modynamic relation under the adiabatic condition

dE= S xdX @1 dE=6 d> + 92 y;dX;, (8.9

is true independent of the method of averaging denoted byherey; is the thermodynamic conjugate variable ﬁ?r
the overline, wher&; are extensive observables aqcheir ~ With respect to the generalized entrofyyhose deviation is

conjugate variables with respect to energy. Even the ordinarihe generalized affinity discussed in Secs. V and.\Here ¢
Gibbs relation is the conjugate variable of the generalized entr@pwith

respect to energy, and the rate functiofor fluctuations is
given by —&%. However, we have not yet succeeded in mak-

dE=TdS+ Z xidX (8.2 ing this framework operationally meaningful.
holds if S i_s comput_eq as t_he_ ordir_wary entropy of the function ACKNOWLEDGEMENTS
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